Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35808677

RESUMO

Resins are important for enhancing both the processability and performance of rubber. Their efficient utilization requires knowledge about their influence on the dynamic glass transition and their miscibility behavior in the specific rubber compound. The resins investigated, poly-(α-methylstyrene) (AMS) and indene-coumarone (IC), differ in molecular rigidity but have a similar aromaticity degree and glass transition temperature. Transmission electron microscopy (TEM) investigations show an accumulation of IC around the silanized silica in styrene-butadiene rubber (SBR) at high contents, while AMS does not show this effect. This higher affinity between IC and the silica surface leads to an increased compactness of the filler network, as determined by dynamic mechanical analysis (DMA). The influence of the resin content on the glass transition of the rubber compounds is evaluated in the sense of the Gordon-Taylor equation and suggests a rigid amorphous fraction for the accumulated IC. Broadband dielectric spectroscopy (BDS) and fast differential scanning calorimetry (FDSC) are applied for the characterization of the dielectric and thermal relaxations as well as for the corresponding vitrification kinetics. The cooling rate dependence of the vitrification process is combined with the thermal and dielectric relaxation time by one single Vogel-Fulcher-Tammann-Hesse equation, showing an increased fragility of the rubber containing AMS.

2.
Polymers (Basel) ; 14(10)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35632007

RESUMO

Four styrene butadiene rubber (SBR) compounds were prepared to investigate the influence of the plasticizer polarity on the mechanical stability of the filler network using simultaneous mechanical and dielectric analysis. One compound was prepared without plasticizer and serves as a reference. The other three compounds were expanded with different plasticizers that have different polarities. Compared with an SBR sample without plasticizer, the conductivity of mechanically unloaded oil-extended SBR samples decreases by an order of magnitude. The polarity of the plasticizer shows hardly any influence because the plasticizers only affect the distribution of the filler clusters. Under static load, the dielectric properties seem to be oil-dependent. However, this behavior also results from the new distribution of the filler clusters caused by the mechanical damage and supported by the polarity grade of the plasticizer used. The Cole-Cole equation affirms these observations. The Cole-Cole relaxation time τ and thus, the position of maximal dielectric loss increases as the polarity of the plasticizer used is also increased. This, in turn, decreases the broadness parameter α implying a broader response function.

3.
Polymers (Basel) ; 11(10)2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614516

RESUMO

A systematic study of several SBR compounds filled with carbon black of various grades were analysed with the high-frequency Dynamic Mechanical Analyzer (HF DMA) in order to quantify the degree of nonlinearity induced by fillers in rubber compounds. These filler grades indirectly reflect different degrees of microdispersion, which seems to be the main influence on the superharmonic resonance phenomenon observed in HF DMA. This statement arises from the comparison of the microdispersion observed in TEM images. In the second part of the paper, a model compound filled with carbon black is enhanced with a standard reinforcing resin, which leads to a more compact filler network. This induces a higher superharmonic resonance response as well as a higher transmissibility behaviour.

4.
Polymers (Basel) ; 11(4)2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30960565

RESUMO

Nonlinear material response is analysed with the Fourier transform (FT) of the raw signal measured by a high-frequency dynamic mechanical analyzer (HF DMA). It is known from rheological behaviour of elastomers that reinforcing fillers additionally induce nonlinearity in an already inherently nonlinear system. This behaviour is often described in terms of a mechanical response of strain sweeps, essentially the transition from the linear viscoelastic (LVE) to the nonlinear viscoelastic (NVE) region. In the current investigation, the NVE region could be observed with respect to frequency under low-amplitude deformation. A foldover effect was observed, whereby the material exhibited a nonlinear dependency in relation to the increment of the filler amount above the percolation threshold. In addition, an apparent superharmonic resonance was observed within higher orders of vibrational modes which is further indication of nonlinearity. In this paper, the analytical approach is presented as a novel method to characterise the behaviour of the polymer⁻filler interaction by HF DMA.

5.
Polymers (Basel) ; 10(5)2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-30966544

RESUMO

The morphology of natural rubber/styrene⁻butadiene rubber blends (NR/SBR) was characterized by atomic force microscopy (AFM), with regard to curing temperature and curing time. The changes in blend morphology were directly visualized by AFM which confirmed the results of indirect experiments like differential scanning calorimetry (DSC). Comparing the phase morphologies at different curing temperatures indicated that the domain size of SBR increases with temperature at lower curing temperatures, but domain growing stops at the latest scorch time. This effect is explained by longer scorch times at low curing temperatures which facilitate phase separation, while the short scorch times at higher temperatures meant that the coalescence of SBR phases was hindered by cross-linking between polymer chains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA