Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; : 107749, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39251136

RESUMO

The embryonic cerebrospinal fluid (eCSF) plays an essential role in the development of the central nervous system (CNS), influencing processes from neurogenesis to lifelong cognitive functions. An important process affecting eCSF composition is inflammation. Inflammation during development can be studied using the maternal immune activation (MIA) mouse model, which displays altered cytokine eCSF composition and mimics neurodevelopmental disorders including autism spectrum disorder (ASD). The limited nature of eCSF as a biosample restricts its research and has hindered our understanding of the eCSF's role in brain pathologies. Specifically, investigation of the small molecule composition of the eCSF is lacking, leaving this aspect of the eCSF composition under-studied. We report here the eCSF metabolome as a resource for investigating developmental neuropathologies from a metabolic perspective. Our reference metabolome includes comprehensive MS1 and MS2 datasets and evaluates two mouse strains (CD-1 and C57Bl/6) and two developmental time points (E12.5 and E14.5). We illustrate the reference metabolome's utility by using untargeted metabolomics to identify eCSF-specific compositional changes following MIA. We uncover MIA-relevant metabolic pathways as differentially abundant in eCSF and validate changes in glucocorticoid and kynurenine pathways through targeted metabolomics approaches. Our resource will guide future studies into the causes of MIA neuropathology and the impact of eCSF composition on brain development.

2.
bioRxiv ; 2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38105934

RESUMO

The cerebrospinal fluid (CSF) serves various roles in the developing central nervous system (CNS), from neurogenesis to lifelong cognitive functions. Changes in CSF composition due to inflammation can impact brain function. We recently identified an abnormal cytokine signature in embryonic CSF (eCSF) following maternal immune activation (MIA), a mouse model of autism spectrum disorder (ASD). We hypothesized that MIA leads to other alterations in eCSF composition and employed untargeted metabolomics to profile changes in the eCSF metabolome in mice after inducing MIA with polyI:C. We report these data here as a resource, include a comprehensive MS1 and MS2 reference dataset, and present additional datasets comparing two mouse strains (CD-1 and C57Bl/6) and two developmental time points (E12.5 and E14.5). Targeted metabolomics further validated changes upon MIA. We show a significant elevation of glucocorticoids and kynurenine pathway related metabolites. Both pathways are relevant for suppressing inflammation or could be informative as disease biomarkers. Our resource should inform future mechanistic studies regarding the etiology of MIA neuropathology and roles and contributions of eCSF metabolites to brain development.

3.
Cell Rep ; 38(8): 110416, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35196485

RESUMO

Neuron-glia interactions play a critical role in the regulation of synapse formation and circuit assembly. Here we demonstrate that canonical Sonic hedgehog (Shh) pathway signaling in cortical astrocytes acts to coordinate layer-specific synaptic connectivity. We show that the Shh receptor Ptch1 is expressed by cortical astrocytes during development and that Shh signaling is necessary and sufficient to promote the expression of genes involved in regulating synaptic development and layer-enriched astrocyte molecular identity. Loss of Shh in layer V neurons reduces astrocyte complexity and coverage by astrocytic processes in tripartite synapses; conversely, cell-autonomous activation of Shh signaling in astrocytes promotes cortical excitatory synapse formation. Furthermore, Shh-dependent genes Lrig1 and Sparc distinctively contribute to astrocyte morphology and synapse formation. Together, these results suggest that Shh secreted from deep-layer cortical neurons acts to specialize the molecular and functional features of astrocytes during development to shape circuit assembly and function.


Assuntos
Astrócitos , Proteínas Hedgehog , Astrócitos/metabolismo , Proteínas Hedgehog/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Sinapses/metabolismo
4.
Elife ; 102021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34851821

RESUMO

The septum is a ventral forebrain structure known to regulate innate behaviors. During embryonic development, septal neurons are produced in multiple proliferative areas from neural progenitors following transcriptional programs that are still largely unknown. Here, we use a combination of single-cell RNA sequencing, histology, and genetic models to address how septal neuron diversity is established during neurogenesis. We find that the transcriptional profiles of septal progenitors change along neurogenesis, coinciding with the generation of distinct neuron types. We characterize the septal eminence, an anatomically distinct and transient proliferative zone composed of progenitors with distinctive molecular profiles, proliferative capacity, and fate potential compared to the rostral septal progenitor zone. We show that Nkx2.1-expressing septal eminence progenitors give rise to neurons belonging to at least three morphological classes, born in temporal cohorts that are distributed across different septal nuclei in a sequential fountain-like pattern. Our study provides insight into the molecular programs that control the sequential production of different neuronal types in the septum, a structure with important roles in regulating mood and motivation.


Assuntos
Neurogênese/genética , Neurônios/fisiologia , Septo do Cérebro/fisiologia , Fator Nuclear 1 de Tireoide/genética , Transcrição Gênica , Animais , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos , Fator Nuclear 1 de Tireoide/metabolismo
5.
Neurosci Lett ; 690: 214-218, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30312751

RESUMO

Recent evidence indicates that Neuropeptide Y (NPY) may function as a potent anxiolytic as well as a resilience factor that can insulate the brain from the effects of stress. However, most of these studies have utilized physical stressors such as shock or restraint. In the present study, we use an ethologically-based model in Syrian hamsters (Mesocricetus auratus) called Conditioned Defeat (CD) to investigate whether NPY can ameliorate the effect of social defeat stress. In the CD model, a male Syrian hamster is socially defeated by a larger, more aggressive conspecific. Subsequently, when paired with a smaller, non-aggressive intruder (NAI) in its own home cage, changes in its behavioral repertoire occur, including a reduction in aggression and chemosensory (social) investigation, and a concomitant increase in submissive behaviors. In Experiment 1, hamsters were infused intracerebroventricularly (icv) with NPY prior to social defeat, and 24-hours later, hamsters were exposed to a NAI. Results indicate that NPY significantly reduced submissive/defensive behaviors in socially defeated hamsters compared to control animals. In Experiment 2, we examined whether this effect was mediated by the NPY Y1 receptor. Subjects were first pre-treated with the Y1 receptor antagonist BIBP 3226 or vehicle, followed by NPY and then socially defeated. Upon testing with a NAI 24-hours later, pretreatment with BIBP 3226 failed to block the NPY effect compared to controls. These results demonstrate that NPY may function as an important resilience factor in socially defeated hamsters, but that these effects are not mediated by the Y1 receptor.


Assuntos
Condicionamento Psicológico/efeitos dos fármacos , Dominação-Subordinação , Neuropeptídeo Y/farmacologia , Animais , Arginina/análogos & derivados , Arginina/farmacologia , Comportamento Animal/efeitos dos fármacos , Cricetinae , Infusões Intraventriculares , Masculino , Neuropeptídeo Y/administração & dosagem , Neuropeptídeo Y/antagonistas & inibidores
6.
Physiol Behav ; 188: 194-198, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29421591

RESUMO

Exposure to social stressors can cause profound changes in an individual's well-being and can be an underlying factor in the etiology of a variety of psychopathologies, such as post-traumatic stress disorder (PTSD). In Syrian hamsters, a single social defeat experience results in behavioral changes collectively known as conditioned defeat (CD), and includes an abolishment of territorial aggression and the emergence of high levels of defensive behaviors. In contrast, voluntary exercise has been shown to promote stress resilience and can also have anxiolytic-like effects. Although several studies have investigated the resilience-inducing effects of voluntary exercise after exposure to physical stressors, such as restraint and electric shock, few studies have examined whether exercise can impart resilience in response to ethologically-based stressors, such as social defeat. In Experiment 1, we tested the hypothesis that voluntary exercise can have anxiolytic-like effects in socially defeated hamsters. In the elevated plus maze, the exercise group exhibited a significant reduction in risk assessment, a commonly used index of anxiety, compared to the no-exercise group. In the open-field test, animals in the exercise group exhibited a significant reduction in locomotor behavior and rearing, also an indication of an anxiolytic-like effect of exercise. In Experiment 2, we examined whether exercise can reverse the defeat-induced potentiation of defensive behaviors using the CD model. Socially defeated hamsters in the exercise group exhibited significantly lower levels of defensive/submissive behaviors compared to the no-exercise group upon exposure to the resident aggressor. Taken together, these results are among the first to suggest that voluntary exercise may promote resilience to social defeat stress in Syrian hamsters.


Assuntos
Dominação-Subordinação , Condicionamento Físico Animal/métodos , Estresse Psicológico/reabilitação , Agressão/fisiologia , Animais , Ansiedade/etiologia , Ansiedade/reabilitação , Condicionamento Psicológico/fisiologia , Cricetinae , Modelos Animais de Doenças , Comportamento Exploratório/fisiologia , Aprendizagem em Labirinto/fisiologia , Mesocricetus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA