Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
R Soc Open Sci ; 10(11): 230949, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38026031

RESUMO

Insecticides and climate change are among the multiple stressors that bees face, but little is known about their synergistic effects, especially for non-Apis bee species. In laboratory experiments, we tested whether the stingless bee Tetragonula hockingsi avoids insecticide in sucrose solutions and how T. hockingsi responds to insecticide and heat stress combined. We found that T. hockingsi neither preferred nor avoided sucrose solutions with either low (2.5 × 10-4 ng µl-1 imidacloprid or 1.0 × 10-4 ng µl-1 fipronil) or high (2.5 × 10-3 ng µl-1 imidacloprid or 1.0 × 10-3 ng µl-1 fipronil) insecticide concentrations when offered alongside sucrose without insecticide. In our combined stress experiment, the smallest dose of imidacloprid (7.5 × 10-4 ng) did not significantly affect thermal tolerance (CTmax). However, CTmax significantly reduced by 0.8°C (±0.16 SE) and by 0.5°C (±0.16 SE) when bees were fed as little as 7.5 × 10-3 ng of imidacloprid or 3.0 × 10-4 ng of fipronil, respectively, and as much as 1.5°C (±0.16 SE) and 1.2°C (±0.16 SE) when bees were fed 7.5 × 10-2 ng of imidacloprid or 3.0 × 10-2 ng of fipronil, respectively. Predictions of temperature increase, and increased insecticide use in the tropics suggest that T. hockingsi will be at increased risk of the effects of both stressors in the future.

2.
Zootaxa ; 5296(3): 333-361, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37518440

RESUMO

The genus Calofulcinia comprises several species of small, cryptic mantis, three of which have been described from Australia. The genus is infrequently recorded and is thus very poorly known, and even basic questions of species delimitation and distribution have remained virtually unknown since the descriptions of these taxa. We here redescribe and figure the three known Australian species of Calofulcinia in full and provide a detailed key to Australian species. We record significant range extensions for all three species, and provide the first detailed behavioural and ecological records for the genus. In addition, we group the Australian species into a Robust Group (C. paraoxypila) and a Gracile Group (C. australis and C. oxynota), we detail the occurrence of colour polymorphism within the genus, and finally we discuss the apparent microhabitat specificity of Calofulcinia spp. (mosses and lichens) and their preference for cool, moist environments with reference to our changing climate.

3.
Zootaxa ; 5380(3): 201-226, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38221315

RESUMO

Ima fusca is one of a number of unusual and infrequently collected Australian mantises about which relatively little is known. Long considered a single species, morphological studies instead revealed the presence of a second cryptic species. We here describe this species as Ima corymbia sp. nov. and redescribe both Ima and Ima fusca in detail. Additionally, we describe a unique, robust species allied to Ima that was discovered with the aid of citizen science, Inimia nat gen. et sp. nov. In light of this discovery, we provide keys to both the Australian Fulciniini genera and to the species of Ima. Finally, we provide detailed behavioural and ecological records for all three species, including the peculiar host plant specificity of Ima spp. We document and discuss this specificity in depth and suggest several possible reasons for its occurrence.


Assuntos
Ciência do Cidadão , Mantódeos , Animais , Austrália , Especificidade de Hospedeiro
4.
Ecol Appl ; 32(4): e2577, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35191120

RESUMO

Risk assessments are fundamental to invasive species management and are underpinned by comprehensive characterization of invasive species impacts. Our understanding of the impacts of invasive species is growing constantly, and several recently developed frameworks offer the opportunity to systematically categorize environmental and socioeconomic impacts of invasive species. Invasive ants are among the most widespread and damaging invaders. Although a handful of species receives most of the policy attention, nearly 200 species have established outside their native range. Here, we provide a global, comprehensive assessment of the impacts of ants and propose a priority list of risk species. We used the Socioeconomic Impact Classification for Alien Taxa (SEICAT), Environmental Impact Classification for Alien Taxa (EICAT) and Generic Impact Scoring System (GISS) to analyze 642 unique sources for 100 named species. Different methodologies provided generally consistent results. The most frequently identified socioeconomic impacts were to human health. Environmental impacts were primarily on animal and plant populations, with the most common mechanisms being predation and competition. Species recognized as harmful nearly 20 years ago featured prominently, including Wasmannia auropunctata (little fire ant, electric ant), Solenopsis invicta (red imported fire ant), Anoplolepis gracilipes (yellow crazy ant), and Pheidole megacephala (African big-headed ant). All these species except W. auropunctata have been implicated in local extinctions of native species. Although our assessments affirmed that the most serious impacts have been driven by a small number of species, our results also highlighted a substantial number of less well publicized species that have had major environmental impacts and may currently be overlooked when prioritizing prevention efforts. Several of these species were ranked as high or higher than some of the previously recognized "usual suspects," most notably Nylanderia fulva (tawny crazy ant). We compared and combined our assessments with trait-based profiles and other lists to propose a consensus set of 31 priority species. Ever-increasing global trade contributes to growing rates of species introductions. The integrated approaches we used can contribute to robust, holistic risk assessments for many taxa entrained in these pathways.


Assuntos
Formigas , Animais , Espécies Introduzidas , Medição de Risco , Fatores Socioeconômicos
5.
Curr Opin Insect Sci ; 47: 119-124, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34252591

RESUMO

Ant invasions and climate change both pose globally widespread threats to the environment and economy. I highlight our current knowledge of how climate change will affect invasive ant distributions, population growth, spread, impact, and invasive ant management. Invasive ants often have traits that enable rapid colony growth in a range of habitats. Consequently, many invasive ant species will continue to have large global distributions as environmental conditions change. Distributions and impacts at community scales will depend on how resident ant communities respond to local abiotic conditions as well as availability of plant-based carbohydrate resources. Though target species may change under an altered climate, invasive ant impacts are unlikely to diminish, and novel control methods will be necessary.


Assuntos
Formigas , Animais , Mudança Climática , Ecossistema , Espécies Introduzidas
6.
Front Zool ; 18(1): 13, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33752683

RESUMO

BACKGROUND: Worker reproduction has an important influence on the social cohesion and efficiency of social insect colonies, but its role in the success of invasive ants has been neglected. We used observations of 233 captive colonies, laboratory experiments, and genetic analyses to investigate the conditions for worker reproduction in the invasive Anoplolepis gracilipes (yellow crazy ant) and its potential cost on interspecific defence. We determined the prevalence of worker production of males and whether it is triggered by queen absence; whether physogastric workers with enlarged abdomens are more likely to be reproductive, how normal workers and physogastric workers compare in their contributions to foraging and defence; and whether worker-produced males and males that could have been queen- or worker-produced differ in their size and heterozygosity. RESULTS: Sixty-six of our 233 captive colonies produced males, and in 25 of these, some males could only have been produced by workers. Colonies with more workers were more likely to produce males, especially for queenless colonies. The average number of days between the first appearance of eggs and adult males in our colonies was 54.1 ± 10.2 (mean ± SD, n = 20). In our laboratory experiment, queen removal triggered an increase in the proportion of physogastric workers. Physogastric workers were more likely to have yolky oocytes (37-54.9%) than normal workers (2-25.6%), which is an indicator of fertile or trophic egg production. Physogastric workers were less aggressive during interspecific aggression tests and foraged less than normal workers. The head width and wing length of worker-produced males were on average 4.0 and 4.3% greater respectively than those of males of undetermined source. Our microsatellite DNA analyses indicate that 5.5% of worker-produced males and 14.3% of males of undetermined source were heterozygous, which suggests the presence of diploid males and/or genetic mosaics in A. gracilipes. CONCLUSIONS: Our experimental work provides crucial information on worker reproduction in A. gracilipes and its potential cost to colony defence. The ability of A. gracilipes workers to produce males in the absence of queens may also contribute to its success as an invasive species if intranidal mating can take place between virgin queens and worker-produced males.

7.
Pest Manag Sci ; 77(4): 1626-1632, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33202096

RESUMO

BACKGROUND: Insect growth regulators (IGRs) generally are considered to have safer eco-toxicological profiles than the more commonly used neurotoxins and metabolic inhibitors, and are extremely effective against several insect groups, including some invasive ant species. However, use of an IGR product in a large-scale eradication program for a widespread invasive ant (Anoploepis gracilipes; yellow crazy ant) was ineffective. We tested the IGR in question (active ingredient: (S)-methoprene) on A. gracilipes colonies in a laboratory environment to evaluate efficacy. RESULTS: We found that treatment with (S)-methoprene resulted in lower egg production with subsequently decreased numbers of larvae, pupae, and workers over the 135 days of the experiment. None of the treated colonies died, and the number of worker ants in treated colonies was 36% of that seen in control colonies 135 days post-treatment. Treated queen egg production was 39% lower than queens in control colonies, but we saw no effect of treatment on the internal physiology of dissected queens. Treatment had no effect on worker activity levels. CONCLUSION: Our results show that although (S)-methoprene treatment reduced production of larvae, pupae and workers in treated colonies, the magnitude of reduction was lower than might be expected considering the responses of other species against which this IGR has been tested. Our findings highlight a need for testing species-specific responses to IGR-based insecticides in a controlled environment, before broad-scale field applications that could result in suboptimal management of the target species. © 2020 Society of Chemical Industry.


Assuntos
Inseticidas , Hormônios Juvenis , Algoritmos , Humanos , Espécies Introduzidas , Hormônios Juvenis/farmacologia , Metoprene
8.
Proc Biol Sci ; 286(1908): 20191071, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31387511

RESUMO

Pathogen spillover from managed bees is increasingly considered as a possible cause of pollinator decline. Though spillover has been frequently documented, evidence of the pathogen's virulence in the new host or mechanism of transmission is rare. Stingless bees (Apocrita: Meliponini) are crucial pollinators pan-tropically and overlap with managed honeybees (Apis mellifera) in much of their range. Nosema ceranae is the most prevalent disease of adult A. mellifera. We used laboratory experiments and field surveys to investigate the susceptibility of stingless bees (Tetragonula hockingsi) to N. ceranae, infection prevalence and transmissibility via flowers. We found that 67% of T. hockingsi fed sucrose with N. ceranae had detectable spores in their ventriculus, and they died at 2.96 times the rate of sucrose-only fed bees. Five of six field hives harboured bees with N. ceranae present at least once during our five-month survey, with prevalence up to 20%. In our floral transmission experiment, 67% of inflorescences exposed to infected A. mellifera yielded N. ceranae spores, and all resulted in T. hockingsi with N. ceranae spores in their guts. We conclude that N. ceranae is virulent in T. hockingsi under laboratory conditions, is common in the local T. hockingsi population and is transmissible via flowers.


Assuntos
Abelhas/microbiologia , Nosema/fisiologia , Animais , Austrália , Polinização , Especificidade da Espécie
9.
Environ Entomol ; 48(5): 1056-1062, 2019 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-31305895

RESUMO

Arboreal ant communities are primarily structured by interactions among ant species, food availability, and physical structures within the environment. Epiphytes are a common feature of tropical forests that can provide ants with both food and nesting space. To date, little work has examined what role epiphytic ant-plants play in structuring arboreal ant communities. We surveyed ant species inhabiting the Australian epiphytic ant-plant Myrmecodia beccarii Hook.f. (Gentianales: Rubiaceae) and how arboreal ant communities are structured in relation to M. beccarii presence on trees. Myrmecodia beccarii was inhabited by the ant Philidris cordata Smith, F. (Hymenoptera: Formicidae) on the majority of Melaleuca viridiflora Sol. Ex Gaertn. (Myrtales: Myrtaceae) trees with ant-occupied ant-plants at our two sites. Dominant arboreal ant species at both study sites exhibited discrete, nonoverlapping distributions, and C-score analysis detected an ant mosaic at one site. The distribution of P. cordata was limited by the distribution of ant-plants for both sites. Philidris cordata dominance on trees was also determined by the presence of M. beccarii occupied by P. cordata at both sites. We suggest that by providing P. cordata with nesting space M. beccarii plays a role in structuring these arboreal ant communities.


Assuntos
Formigas , Animais , Austrália , Plantas , Simbiose , Árvores
10.
Sci Rep ; 9(1): 4566, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30872734

RESUMO

How invasive species overcome challenges associated with low genetic diversity is unclear. Invasive ant populations with low genetic diversity sometimes produce sterile diploid males, which do not contribute to colony labour or reproductive output. We investigated how inbreeding affects colony founding and potential strategies to overcome its effects in the invasive tropical fire ant, Solenopsis geminata. Our genetic analyses of field samples revealed that 13-100% of males per colony (n = 8 males per 10 colonies) were diploid, and that all newly mated queens (n = 40) were single-mated. Our laboratory experiment in which we assigned newly mated queens to nests consisting of 1, 2, 3, or 5 queens (n = 95 ± 9 replicates) revealed that pleometrosis (queens founding their nest together) and diploid male larvae execution can compensate for diploid male load. The proportion of diploid male producing (DMP) colonies was 22.4%, and DMP colonies produced fewer pupae and adult workers than non-DMP colonies. Pleometrosis significantly increased colony size. Queens executed their diploid male larvae in 43.5% of the DMP colonies, and we hypothesize that cannibalism benefits incipient colonies because queens can redirect nutrients to worker brood. Pleometrosis and cannibalism of diploid male larvae represent strategies through which invasive ants can successfully establish despite high inbreeding.


Assuntos
Formigas , Endogamia , Animais , Formigas/classificação , Formigas/genética , Feminino , Genótipo , Masculino , Repetições de Microssatélites
11.
Pest Manag Sci ; 75(10): 2627-2633, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30706632

RESUMO

BACKGROUND: Recent research on multiple invasive ant species has revealed the importance of carbohydrates for achieving high activity levels and outcompeting native ants. However, comparatively little is known about the role of diet and macronutrient preferences for uptake of insecticidal baits used to control invasive ants. We tested whether diet affected yellow crazy ant (Anoplolepis gracilipes Fr Smith) survival and behavior, and whether bait preference would be complementary to past diet. RESULTS: We found that colonies fed only crickets for 28 days had fewer live workers and queens, and less brood per live queen than colonies fed crickets + honeydew but did not differ significantly from colonies fed only honeydew. Colonies that had been fed only crickets were more active (as assessed by interaction with a novel object), retrieved 16-17 times more bait per worker overall, and consumed more of the six bait types than cricket + honeydew and honeydew-only fed colonies. However, prior diet did not affect bait choice. The two highest sugar bait formulations combined accounted for most of the bait consumed across all treatments (cricket-only 74.8% ± 28.1; cricket + honeydew 69.2% ± 12.4; honeydew-only 62.5% ± 30.4). CONCLUSION: Yellow crazy ant colonies fare better without protein than without carbohydrates. Yellow crazy ants ate the most bait when fed only crickets but did not choose baits complementary to their previous diet. Baits in a sugar-rich carrier may be most effective for the control of yellow crazy ants, regardless of the relative availability of macronutrients. © 2019 Society of Chemical Industry.


Assuntos
Formigas , Dieta , Controle de Insetos , Inseticidas , Animais , Formigas/fisiologia , Preferências Alimentares/fisiologia , Espécies Introduzidas
12.
PLoS One ; 13(8): e0201845, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30110359

RESUMO

Honeydew production by Hemiptera is an ecologically important process that facilitates mutualisms and increases nutrient cycling. Accurate estimates of the amount of honeydew available in a system are essential for quantifying food web dynamics, energy flow, and the potential growth of sooty mould that inhibits plant growth. Despite the importance of honeydew, there is no standardized method to estimate its production when intensive laboratory testing is not feasible. We developed two new models to predict honeydew production, one based on insect body mass and taxonomic family, and one based on body mass and life stage. We tested the accuracy of both models' predictions for a diverse range of honeydew-producing hemipteran families (Aphididae, Pseudococcidae, Coccidae, Psyllidae, Aleyrodidae, Delphacidae, Cicadellidae). The method based on body mass and family provided more accurate estimates of honeydew production, due to large variation in honeydew production among families. We apply our methodology to a case study, the recalculation of honeydew available to invasive red imported fire ant (Solenopsis invicta) in the United States. We find that the amount of honeydew may be an order of magnitude lower than that previously estimated (2.16 versus 21.6 grams of honeydew per day) and discuss possible reasons for the difference. We anticipate that being able to estimate honeydew production based on minimal biological information will have applications to agriculture, invasion biology, forestry, and carbon farming.


Assuntos
Hemípteros , Modelos Biológicos , Animais , Hemípteros/anatomia & histologia , Hemípteros/crescimento & desenvolvimento , Espécies Introduzidas , América do Norte , Especificidade da Espécie , Simbiose
13.
Glob Chang Biol ; 24(10): 4614-4625, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29851235

RESUMO

The relationship between levels of dominance and species richness is highly contentious, especially in ant communities. The dominance-impoverishment rule states that high levels of dominance only occur in species-poor communities, but there appear to be many cases of high levels of dominance in highly diverse communities. The extent to which dominant species limit local richness through competitive exclusion remains unclear, but such exclusion appears more apparent for non-native rather than native dominant species. Here we perform the first global analysis of the relationship between behavioral dominance and species richness. We used data from 1,293 local assemblages of ground-dwelling ants distributed across five continents to document the generality of the dominance-impoverishment rule, and to identify the biotic and abiotic conditions under which it does and does not apply. We found that the behavioral dominance-diversity relationship varies greatly, and depends on whether dominant species are native or non-native, whether dominance is considered as occurrence or relative abundance, and on variation in mean annual temperature. There were declines in diversity with increasing dominance in invaded communities, but diversity increased with increasing dominance in native communities. These patterns occur along the global temperature gradient. However, positive and negative relationships are strongest in the hottest sites. We also found that climate regulates the degree of behavioral dominance, but differently from how it shapes species richness. Our findings imply that, despite strong competitive interactions among ants, competitive exclusion is not a major driver of local richness in native ant communities. Although the dominance-impoverishment rule applies to invaded communities, we propose an alternative dominance-diversification rule for native communities.


Assuntos
Formigas/fisiologia , Biodiversidade , Animais , Clima , Ecossistema
14.
Microb Ecol ; 76(2): 482-491, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29380027

RESUMO

Parasites often modify host foraging behavior, for example, by spurring changes to nutrient intake ratios or triggering self-medication. The gut parasite, Nosema ceranae, increases energy needs of the European or Western honey bee (Apis mellifera), but little is known about how infection affects foraging behavior. We used a combination of experiments and observations of caged and free-flying individual bees and hives to determine how N. ceranae affects honey bee foraging behavior. In an experiment with caged bees, we found that infected bees with access to a high-quality pollen were more likely to survive than infected bees with access to a lower quality pollen or no pollen. Non-infected bees showed no difference in survival with pollen quality. We then tested free-flying bees in an arena of artificial flowers and found that pollen foraging bees chose pollen commensurate with their infection status; twice as many infected bees selected the higher quality pollen than the lower quality pollen, while healthy bees showed no preference between pollen types. However, healthy and infected bees visited sucrose and pollen flowers in the same proportions. Among hive-level observations, we found no significant correlations between N. ceranae infection intensity in the hive and the proportion of bees returning with pollen. Our results indicate that N. ceranae-infected bees benefit from increased pollen quality and will selectively forage for higher quality while foraging for pollen, but infection status does not lead to increased pollen foraging at either the individual or hive levels.


Assuntos
Abelhas/microbiologia , Comportamento Animal/fisiologia , Nosema/fisiologia , Pólen , Ração Animal , Animais , Interações entre Hospedeiro e Microrganismos/fisiologia , Nosema/patogenicidade , Taxa de Sobrevida
15.
Proc Biol Sci ; 285(1871)2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29367390

RESUMO

At local scales, native species can resist invasion by feeding on and competing with would-be invasive species. However, this relationship tends to break down or reverse at larger scales. Here, we consider the role of native species as indirect facilitators of invasion and their potential role in this diversity-driven 'invasion paradox'. We coin the term 'native turncoats' to describe native facilitators of non-native species and identify eight ways they may indirectly facilitate species invasion. Some are commonly documented, while others, such as indirect interactions within competitive communities, are largely undocumented in an invasion context. Therefore, we use models to evaluate the likelihood that these competitive interactions influence invasions. We find that native turncoat effects increase with the number of resources and native species. Furthermore, our findings suggest the existence, abundance and effectiveness of native turncoats in a community could greatly influence invasion success at large scales.


Assuntos
Ecossistema , Espécies Introduzidas , Invertebrados/fisiologia , Fenômenos Fisiológicos Vegetais , Vertebrados/fisiologia , Animais , Biodiversidade , Modelos Biológicos
16.
Ecology ; 98(3): 883-884, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27984661

RESUMO

What forces structure ecological assemblages? A key limitation to general insights about assemblage structure is the availability of data that are collected at a small spatial grain (local assemblages) and a large spatial extent (global coverage). Here, we present published and unpublished data from 51 ,388 ant abundance and occurrence records of more than 2,693 species and 7,953 morphospecies from local assemblages collected at 4,212 locations around the world. Ants were selected because they are diverse and abundant globally, comprise a large fraction of animal biomass in most terrestrial communities, and are key contributors to a range of ecosystem functions. Data were collected between 1949 and 2014, and include, for each geo-referenced sampling site, both the identity of the ants collected and details of sampling design, habitat type, and degree of disturbance. The aim of compiling this data set was to provide comprehensive species abundance data in order to test relationships between assemblage structure and environmental and biogeographic factors. Data were collected using a variety of standardized methods, such as pitfall and Winkler traps, and will be valuable for studies investigating large-scale forces structuring local assemblages. Understanding such relationships is particularly critical under current rates of global change. We encourage authors holding additional data on systematically collected ant assemblages, especially those in dry and cold, and remote areas, to contact us and contribute their data to this growing data set.


Assuntos
Formigas/fisiologia , Bases de Dados Factuais , Ecologia , Animais , Formigas/classificação , Ecossistema
17.
Ecology ; 98(2): 500-511, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27864933

RESUMO

Understanding the relationship between plant diversity and diversity at higher trophic levels is important from both conservation and restoration perspectives. Although there is strong evidence for bottom-up maintenance of biodiversity, this is based largely on studies of simplified grassland systems. Recently, studies in the TreeDivNet global network of tree diversity experiments have begun to test whether these findings are generalizable to more complex ecosystems, such as woodlands. We monitored invertebrate community reassembly over 5 yr of experimental woodland restoration at the TreeDivNet Ridgefield site in southwest Australia, testing the effects of woody plant species richness and herb-layer manipulation on invertebrate community structure and ant species composition. From 2010 to 2014, we sampled ground-dwelling invertebrates using pitfall traps in herbicide vs. no-herbicide subplots nested within each of 10 woody plant treatments varying in richness from zero (bare controls) to eight species, which produced a total of 211, 235 invertebrates, including 98, 979 ants belonging to 74 species. In mixed model analyses, the presence of woody plants was an important driver of faunal community reassembly (relative to bare control plots), but faunal responses to woody plant treatment combinations were idiosyncratic and unrelated to woody plant richness across treatments. We also found that a herbicide-induced reduction in herbaceous plant cover and richness had a positive effect on ant richness and caused more rapid convergence of invertebrate community composition toward the composition of a woodland reference site. These findings show that woody plant richness did not have direct positive effects on the diversity and community reassembly trajectories of higher trophic levels in our woodland system. From a management perspective, this suggests that even low-diversity restoration or carbon sequestration plantings can potentially lead to faunal reassembly outcomes that are comparable to more complex re-planting designs.


Assuntos
Biodiversidade , Ecossistema , Invertebrados/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Animais , Austrália , Invertebrados/classificação , Árvores/classificação
18.
J Invertebr Pathol ; 130: 64-71, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26149824

RESUMO

Research into loss of pollination capacity has focused primarily on documenting pollinator declines and their causes with comparatively little attention paid to how stressors may affect pollinating behavior of surviving pollinators. The European honey bee, Apis mellifera is one of the world's most important generalist pollinators, and Nosema apis is a widespread microsporidian gut parasite of adult A. mellifera. We individually fed 960 newly eclosed A. mellifera workers either a sucrose solution or 400 N. apis spores in a sucrose solution and tagged them with a unique radio frequency identification (RFID) tag to monitor their foraging behavior. We found spore-fed bees were less likely to forage than those fed sugar only. Those that did forage started foraging when they were older and stopped foraging when they were younger than bees fed sugar only. However, inoculated and non-inoculated bees did not significantly differ in the number of foraging trips taken per day, the total hours foraged over their lifetime, or homing ability. Inoculated returning foragers were 4.3 times less likely to be carrying available pollen than non-inoculated returning foragers and the number of pollen grains carried was negatively correlated with the number of N. apis spores. In an arena of artificial flowers, inoculated bees had a tendency (p=0.061) to choose sugar flowers over pollen flowers, compared to non-inoculated bees which visited pollen and sugar flowers equally. These results demonstrate that even a relatively low dose of a widespread disease of A. mellifera may adversely affect bees' ability to pollinate.


Assuntos
Abelhas/parasitologia , Comportamento Animal/fisiologia , Nosema , Animais , Polinização
19.
Proc Biol Sci ; 282(1808): 20150418, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25994675

RESUMO

Many studies have focused on the impacts of climate change on biological assemblages, yet little is known about how climate interacts with other major anthropogenic influences on biodiversity, such as habitat disturbance. Using a unique global database of 1128 local ant assemblages, we examined whether climate mediates the effects of habitat disturbance on assemblage structure at a global scale. Species richness and evenness were associated positively with temperature, and negatively with disturbance. However, the interaction among temperature, precipitation and disturbance shaped species richness and evenness. The effect was manifested through a failure of species richness to increase substantially with temperature in transformed habitats at low precipitation. At low precipitation levels, evenness increased with temperature in undisturbed sites, peaked at medium temperatures in disturbed sites and remained low in transformed sites. In warmer climates with lower rainfall, the effects of increasing disturbance on species richness and evenness were akin to decreases in temperature of up to 9°C. Anthropogenic disturbance and ongoing climate change may interact in complicated ways to shape the structure of assemblages, with hot, arid environments likely to be at greatest risk.


Assuntos
Formigas/fisiologia , Biodiversidade , Clima , Animais , Mudança Climática , Temperatura
20.
Ecology ; 88(8): 1994-2004, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17824431

RESUMO

The loss of biodiversity and associated ecosystem services are major threats posed by the spread of alien invasive species. Invasive ants are frequently associated with declines in the diversity of ground-dwelling arthropods but also may affect plants through their attraction to floral nectar and tending of hemipterans. Protea nitida is a tree native to the South African fynbos that hosts a native membracid, Beaufortiana sp., which is tended by ants. Here I compare Argentine ants (Linepithema humile) to native ants in their attraction to P. nitida inflorescences in the presence and absence of the membracid, and their effects on other floral arthropod visitors, seed set, and ovule predation. Argentine ant discovery of inflorescences increased at least 13-fold when membracids were present on the branch, whereas native ant discovery of inflorescences was only doubled by membracid presence at one site in one study year and was unaffected in the other three site-years. Excluding Argentine ants from inflorescences resulted in an increase in several arthropod taxa and potential pollinators; native ant exclusion had no positive effects. Thus the mutualism between Argentine ants and the membracid is facilitating pollinator deterrence by the ants. Though Argentine ants were not associated with a decline in P. nitida seed set or ovule predation, declines in generalist insect pollinators may have ramifications for the 83% of fynbos plants that are insect pollinated. Pitfall traps showed that Argentine ants were not more abundant than native ants in non-invaded sites. Focusing only on abundance on the ground and displacement of ground-dwelling arthropod fauna may lead to an underestimate of the effects of invasive ants on their adopted communities.


Assuntos
Formigas/fisiologia , Biodiversidade , Ecossistema , Pólen/fisiologia , Proteaceae/fisiologia , Animais , Comportamento Alimentar , Dinâmica Populacional , Sementes , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...