Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 13: 898067, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935876

RESUMO

Gastrointestinal disorders in Parkinson's disease (PD) have been associated with neuronal alteration in the plexus of the gut. We previously demonstrated the immunomodulatory effect of female hormones to treat enteric neurodegeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. This study made the hypothesis of obtaining similar neuroprotection as with hormone treatments by affecting steroidogenesis with two 5α-reductase inhibitors, finasteride and dutasteride. These drugs are approved to treat benign prostatic hyperplasia and alopecia and display mitochondrial effects. In MPTP-treated mice, the dopaminergic and vasoactive intestinal peptide (VIP) neurons alteration was prevented by finasteride and dutasteride, while the increase in proinflammatory macrophages density was inhibited by dutasteride treatment but not finasteride. NF-κB response, oxidative stress, and nitric oxide and proinflammatory cytokines production in vitro were only prevented by dutasteride. In addition, mitochondrial production of free radicals, membrane depolarization, decreased basal respiration, and ATP production were inhibited by dutasteride, while finasteride had no effect. In conclusion, the present results indicate that dutasteride treatment prevents enteric neuronal damages in the MPTP mouse model, at least in part through anti-inflammatory and mitochondrial effects. This suggests that drug repurposing of dutasteride might be a promising avenue to treat enteric neuroinflammation in early PD.

2.
Sci Rep ; 11(1): 11248, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045571

RESUMO

The myeloid inhibitory receptor CLEC12A negatively regulates inflammation. Reduced CLEC12A expression enhances inflammation in CLEC12A knock-out mice with collagen antibody-induced arthritis. Moreover, CLEC12A internalisation augments human neutrophil activation. We thus postulated that CLEC12A expression on circulating myeloid cells of rheumatoid arthritis patients is associated with disease manifestations. Cell-surface, CLEC12A receptor expression was determined on circulating neutrophils and monocytes of eRA patients and of healthy donors. Generalized estimating equations model, Student's t-test and Spearman's correlations were performed to compare CLEC12A expression between groups and test its association with disease activity and clinical parameters. Plasma cytokines were measured by multiplex immunoassay. Patients with reduced neutrophil or monocyte CLEC12A expression at baseline and at 3 months have an increased simple disease activity index. Low baseline CLEC12A expression also correlates with a higher SDAI at 6 months. In contrast, positive correlations were observed between baseline CLEC12A expression and several cytokines. Moreover, neutrophil and monocyte CLEC12A expression is significantly higher in early rheumatoid arthritis patients at baseline than healthy controls. Circulating neutrophil and monocyte CLEC12A expression correlates with disease activity at baseline and is predictive of SDAI at later stages of the disease indicative of a regulatory role for CLEC12A in RA.


Assuntos
Artrite Reumatoide/metabolismo , Citocinas/sangue , Lectinas Tipo C/metabolismo , Células Mieloides/metabolismo , Receptores Mitogênicos/metabolismo , Idoso , Artrite Reumatoide/diagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Ativação de Neutrófilo , Neutrófilos/metabolismo , Índice de Gravidade de Doença
3.
Tissue Eng Part C Methods ; 27(3): 152-166, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33573474

RESUMO

The lack of appropriate experimental models often limits our ability to investigate the establishment of infections in specific tissues. To reproduce the structural and spatial organization of vaginal mucosae to study human immunodeficiency virus type-1 (HIV-1) infection, we used the self-assembly technique to bioengineer tridimensional vaginal mucosae using human cells extracted from HIV-1-negative healthy pre- and postmenopausal donors. We produced a stroma, free of exogenous material, that can be adapted to generate near-to-native vaginal tissue with the best complexity obtained with seeded epithelial cells on the organ-specific stroma. The autologous engineered tissues had mechanical properties close to native mucosa and shared similar glycogen production, which declined in reconstructed tissues of the postmenopausal donor. The in vitro-engineered tissues were also rendered immune competent by adding human monocyte-derived macrophages (MDMs) on the epithelium or in the stroma layers. The model was infected with HIV-1, and viral replication and transcytosis were observed when immunocompetent reconstructed vaginal mucosa tissue has incorporated MDMs into the stroma and infected with free HIV-1 green fluorescent protein (GFP) viral particles. These data illustrate a natural permissiveness of immunocompetent untransformed human vaginal mucosae to HIV-1 infection. This model offers a physiological tool to explore viral load, HIV-1 transmission in an environment that may contribute to the virus propagation, and new antiviral treatments in vitro. Impact statement This study introduces an innovative immunocompetent three-dimensional human organ-specific vaginal mucosa free of exogenous material for in vitro modeling of human immunodeficiency virus type-1 (HIV-1) infection. The proposed model is histologically close to native tissue, especially by presenting glycogen accumulation in the epithelium's superficial cells, responsive to estrogen, and able to sustain a monocyte-derived macrophage population infected or not by HIV-1 during ∼2 months.


Assuntos
Infecções por HIV , HIV-1 , Feminino , Hormônios , Humanos , Mucosa , Vagina
4.
Environ Res ; 196: 110336, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33091430

RESUMO

Bisphenol A (BPA) and its main substitute, bisphenol S (BPS), are synthetic organic compounds found in various consumer products, in particular food and beverage containers. Numerous reports have shown a link between bisphenol exposure, human contamination and increased health problems. BPA, BPS and their metabolites are detectable in bodily fluids (blood, urine) and were reported to affect immune cells and their responses. Though, the impact of those chemicals on neutrophils, the most abundant leukocytes in the circulation, remains poorly described. Therefore, we examined the effects of BPA, BPS and their monoglucuronide conjugates on neutrophil energy metabolism and anti-microbial functions, mainly phagocytosis, superoxide anion generation and CXCL8/IL-8 chemokine production. We observed that short and prolonged exposures of neutrophils to these chemicals modulate the basal and the bacterium-derived peptide N-formyl-methionyl-leucyl-phenylalanine-induced glycolysis, with BPS causing the most alterations. The variation in energy metabolism was not associated with dysfunctions in cell cytotoxicity, phagocytosis, nor superoxide anion production upon exposure to bisphenols. In contrast, bisphenols significantly reduced the production of CXCL8/IL-8 by neutrophils, an effect found to be greater with the glucuronidated metabolites. Our study highlights that BPA, BPS and their glucuronidated metabolites alter the energy metabolism and certain anti-microbial responses of neutrophils, with possible health implications. Importantly, we found that BPS and the glucuronidated metabolites of BPA and BPS showed higher endocrine-disrupting potential than BPA. More studies on bisphenols, especially the less-documented BPS and bisphenol metabolites, are needed to fully determine their risks, allow better regulation of these compounds, and restrict their extensive usage.


Assuntos
Compostos Benzidrílicos , Neutrófilos , Compostos Benzidrílicos/toxicidade , Glicólise , Humanos , Fenóis , Sulfonas
5.
PLoS One ; 14(8): e0221528, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31437241

RESUMO

Expressed strongly by myeloid cells, damage-associated molecular pattern (DAMP) proteins S100A8 and S100A9 are found in the serum of patients with infectious and autoimmune diseases. Compared to S100A9, the role of S100A8 is controversial. We investigated its biological activity in collagen-induced arthritis using the first known viable and fertile S100a8-deficient (S100a8-/-) mouse. Although comparable to the wild type (WT) in terms of lymphocyte distribution in blood and in the primary and secondary lymphoid organs, S100a8-/- mice had increased numbers of neutrophils, monocytes and dendritic cells in the blood and bone marrow, and these all expressed myeloid markers such as CD11b, Ly6G and CD86 more strongly. Granulocyte-macrophage common precursors were increased in S100a8-/- bone marrow and yielded greater numbers of macrophages and dendritic cells in culture. The animals also developed more severe arthritic disease leading to aggravated osteoclast activity and bone destruction. These findings were correlated with increased inflammatory cell infiltration and cytokine secretion in the paws. This study suggests that S100A8 is an anti-inflammatory DAMP that regulates myeloid cell differentiation, thereby mitigating the development of experimental arthritis.


Assuntos
Artrite Experimental/patologia , Calgranulina A/deficiência , Mielopoese , Animais , Artrite Experimental/diagnóstico por imagem , Medula Óssea/patologia , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Calgranulina A/metabolismo , Cartilagem/patologia , Diferenciação Celular , Células Dendríticas/metabolismo , Feminino , Deleção de Genes , Camundongos , Células Mieloides/patologia
6.
J Leukoc Biol ; 102(3): 805-813, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28550118

RESUMO

Gout is one of the most painful types of arthritis that arises when the body mounts an acute inflammatory reaction against a crystallized form of uric acid known as monosodium urate crystals (MSUs). Although MSUs are known to activate neutrophils, the most abundant leukocyte in the synovial fluid of patients with gout, few studies have investigated the effect on neutrophils of the simultaneous stimulation with MSU and proinflammatory mediators in the inflamed joint. Herein, we focused on a protein that is highly expressed in the synovium in gout, S100A9. The predominant expression of S100A9 in and around blood vessels suggests it may prime neutrophils during their migration toward the inflamed joint. Using a combination of functional and signaling assays, we found that S100A9 enhances the production of radical oxygen species as well as IL-1 and IL-8 release by human neutrophils activated with MSU. Moreover, upstream and downstream signaling events activated by MSUs in human neutrophils were also potentiated by S100A9, including the mobilization of intracellular calcium stores, tyrosine phosphorylation, the serine phosphorylation of PKC substrates, Akt, and p38. We also show that S100A9 alone increases glycolysis in human neutrophils, which is suggestive of an additional mechanism through which neutrophils can be primed. Together, our observations indicate a novel way in which S100A9 may contribute to the pathogenesis of gout, by priming neutrophils to respond to MSUs.


Assuntos
Sinalização do Cálcio/imunologia , Calgranulina B/imunologia , Gota/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Ativação de Neutrófilo , Neutrófilos/imunologia , Ácido Úrico/imunologia , Adulto , Cálcio/imunologia , Feminino , Gota/patologia , Humanos , Interleucina-1/imunologia , Interleucina-8/imunologia , Masculino , Neutrófilos/patologia , Proteínas Proto-Oncogênicas c-akt/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia
7.
Blood ; 129(14): 1980-1990, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28137827

RESUMO

S100A8 and S100A9 are calcium-binding proteins predominantly expressed by neutrophils and monocytes and play key roles in both normal and pathological inflammation. Recently, both proteins were found to promote tumor progression through the establishment of premetastatic niches and inhibit antitumor immune responses. Although S100A8 and S100A9 have been studied in solid cancers, their functions in hematological malignancies remain poorly understood. However, S100A8 and S100A9 are highly expressed in acute myeloid leukemia (AML), and S100A8 expression has been linked to poor prognosis in AML. We identified a small subpopulation of cells expressing S100A8 and S100A9 in AML mouse models and primary human AML samples. In vitro and in vivo analyses revealed that S100A9 induces AML cell differentiation, whereas S100A8 prevents differentiation induced by S100A9 activity and maintains AML immature phenotype. Treatment with recombinant S100A9 proteins increased AML cell maturation, induced growth arrest, and prolonged survival in an AML mouse model. Interestingly, anti-S100A8 antibody treatment had effects similar to those of S100A9 therapy in vivo, suggesting that high ratios of S100A9 over S100A8 are required to induce differentiation. Our in vitro studies on the mechanisms/pathways involved in leukemic cell differentiation revealed that binding of S100A9 to Toll-like receptor 4 (TLR4) promotes activation of p38 mitogen-activated protein kinase, extracellular signal-regulated kinases 1 and 2, and Jun N-terminal kinase signaling pathways, leading to myelomonocytic and monocytic AML cell differentiation. These findings indicate that S100A8 and S100A9 are regulators of myeloid differentiation in leukemia and have therapeutic potential in myelomonocytic and monocytic AMLs.


Assuntos
Calgranulina B/metabolismo , Diferenciação Celular , Leucemia Mieloide Aguda/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas de Neoplasias/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Calgranulina A/genética , Calgranulina A/metabolismo , Calgranulina B/genética , Modelos Animais de Doenças , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Knockout , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas de Neoplasias/genética , Receptor 4 Toll-Like/genética
8.
Reprod Biomed Online ; 32(1): 85-95, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26602943

RESUMO

The mechanisms involving the expression of interleukin (IL) 1 family members in the process of preparing the endometrium to receive an embryo remain unclear. In this study, decidualization differentially skewed the balance of IL1 family receptor expression in a pattern that increases endometrial stromal cell receptivity to IL1, IL18 and IL33. Additionally, endometrial cells showed increased expression of homeobox HOXA10 and HOXA11 and LIFR, which are known to be involved in endometrial embryo receptivity. Further analyses of decidual endometrial cells revealed a significant increase in the release of potent proinflammatory, remodelling and angiogenic factors implicated in the embryo invasion process, such as VEGF (P = 0.0305), MMP9 (P = 0.0003), TIMP3 (P = 0.0001), RANTES (P = 0.0020), MCP1 (P = 0.0001) and MIF (P = 0.0068). No significant changes in endogenous IL1B secretion were observed. Decreased secretion of IL18 and decidualization increased secretion of IL33. These findings reveal a significant modulation of endometrial cell receptivity to IL1 family members during endometrial stromal cell decidualization, and suggest that the involvement of IL1 family members is important in physiological processes of endometrial receptivity, including adaptive immunology. This may be relevant to establishing a favourable uterine microenvironment for embryo implantation.


Assuntos
Indutores da Angiogênese/metabolismo , Decídua/metabolismo , Implantação do Embrião/genética , Endométrio/metabolismo , Mediadores da Inflamação/metabolismo , Células Estromais/metabolismo , Adulto , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Decídua/citologia , Endométrio/citologia , Feminino , Regulação da Expressão Gênica , Humanos , Gravidez , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
J Med Primatol ; 41(6): 372-83, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22978812

RESUMO

BACKGROUND: Previous analysis of aromatase gene and protein expression in peripheral blood leucocytes (PBLs), studied in children and adults, was extended to elderly subjects. In addition, we assessed whether aromatase expression in PBLs could be used as a parameter of aromatase expression in other tissues, using the cynomolgus monkey as model. METHODS: Real-time PCR analysis of aromatase gene expression and protein evaluation by Western blot was performed in PBLs of human elderly subjects and in various tissues from cynomolgus monkeys. RESULTS: No gender-related difference in CYP19A1 mRNA and protein expression in PBLs from human elderly women and men was found. In elderly male cynomolgus monkeys, CYP19A1 mRNA and protein were expressed in all cells and tissues analysed, with the lowest levels in PBLs but no clear-cut correlation with other tissues. CONCLUSIONS: Aromatase expression in PBLs in elderly human subjects is not gender-related and cannot be a surrogate of aromatase expression for other tissues.


Assuntos
Aromatase/genética , Expressão Gênica , Leucócitos/enzimologia , Macaca fascicularis/metabolismo , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Animais , Aromatase/análise , Aromatase/sangue , Epididimo/enzimologia , Estradiol/sangue , Feminino , Fibroblastos/enzimologia , Humanos , Hipotálamo/enzimologia , Fígado/enzimologia , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/análise , RNA Mensageiro/sangue , Reação em Cadeia da Polimerase em Tempo Real , Testículo/enzimologia , Testosterona/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...