Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2682: 175-189, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37610582

RESUMO

Aerosol and inhalational studies of high-consequence pathogens allow researchers to study the disease course and effects of biologicals transmitted through aerosol in a laboratory-controlled environment. Inhalational studies involving Nipah virus with small (1-3 µm), intermediate (6-8 µm), and large particles (10-14 µm) were explored in African green nonhuman primates to determine if the subsequent disease course more closely recapitulated what is observed in Nipah virus human disease. The aerosol procedures outlined describe the different equipment/techniques used to generate the three particle sizes and control the site of particle deposition within this animal model.


Assuntos
Produtos Biológicos , Vírus Nipah , Animais , Humanos , Chlorocebus aethiops , Tamanho da Partícula , Aerossóis , Progressão da Doença , Primatas
2.
Viruses ; 12(12)2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33327396

RESUMO

We report the discovery and sequence-based molecular characterization of a novel virus, lanama virus (LNMV), in blood samples obtained from two wild vervet monkeys (Chlorocebus pygerythrus), sampled near Lake Nabugabo, Masaka District, Uganda. Sequencing of the complete viral genomes and subsequent phylogenetic analysis identified LNMV as a distinct member of species Kunsagivirus C, in the undercharacterized picornavirid genus Kunsagivirus.


Assuntos
Chlorocebus aethiops/virologia , Doenças dos Macacos/virologia , Infecções por Picornaviridae/veterinária , Picornaviridae/classificação , Animais , Genoma Viral , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia
3.
bioRxiv ; 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32511338

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing an exponentially increasing number of coronavirus disease 19 (COVID-19) cases globally. Prioritization of medical countermeasures for evaluation in randomized clinical trials is critically hindered by the lack of COVID-19 animal models that enable accurate, quantifiable, and reproducible measurement of COVID-19 pulmonary disease free from observer bias. We first used serial computed tomography (CT) to demonstrate that bilateral intrabronchial instillation of SARS-CoV-2 into crab-eating macaques (Macaca fascicularis) results in mild-to-moderate lung abnormalities qualitatively characteristic of subclinical or mild-to-moderate COVID-19 (e.g., ground-glass opacities with or without reticulation, paving, or alveolar consolidation, peri-bronchial thickening, linear opacities) at typical locations (peripheral>central, posterior and dependent, bilateral, multi-lobar). We then used positron emission tomography (PET) analysis to demonstrate increased FDG uptake in the CT-defined lung abnormalities and regional lymph nodes. PET/CT imaging findings appeared in all macaques as early as 2 days post-exposure, variably progressed, and subsequently resolved by 6-12 days post-exposure. Finally, we applied operator-independent, semi-automatic quantification of the volume and radiodensity of CT abnormalities as a possible primary endpoint for immediate and objective efficacy testing of candidate medical countermeasures.

4.
mSphere ; 3(6)2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30541777

RESUMO

Single photon emission computed tomography (SPECT) is frequently used in oncology and cardiology to evaluate disease progression and/or treatment efficacy. Such technology allows for real-time evaluation of disease progression and when applied to studying infectious diseases may provide insight into pathogenesis. Insertion of a SPECT-compatible reporter gene into a virus may provide insight into mechanisms of pathogenesis and viral tropism. The human sodium iodide symporter (hNIS), a SPECT and positron emission tomography reporter gene, was inserted into Middle East respiratory syndrome coronavirus (MERS-CoV), a recently emerged virus that can cause severe respiratory disease and death in afflicted humans to obtain a quantifiable and sensitive marker for viral replication to further MERS-CoV animal model development. The recombinant virus was evaluated for fitness, stability, and reporter gene functionality. The recombinant and parental viruses demonstrated equal fitness in terms of peak titer and replication kinetics, were stable for up to six in vitro passages, and were functional. Further in vivo evaluation indicated variable stability, but resolution limits hampered in vivo functional evaluation. These data support the further development of hNIS for monitoring infection in animal models of viral disease.IMPORTANCE Advanced medical imaging such as single photon emission computed tomography with computed tomography (SPECT/CT) enhances fields such as oncology and cardiology. Application of SPECT/CT, magnetic resonance imaging, and positron emission tomography to infectious disease may enhance pathogenesis studies and provide alternate biomarkers of disease progression. The experiments described in this article focus on insertion of a SPECT/CT-compatible reporter gene into MERS-CoV to demonstrate that a functional SPECT/CT reporter gene can be inserted into a virus.


Assuntos
Infecções por Coronavirus/patologia , Genes Reporter , Coronavírus da Síndrome Respiratória do Oriente Médio/crescimento & desenvolvimento , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/métodos , Simportadores/metabolismo , Animais , Chlorocebus aethiops , Modelos Animais de Doenças , Instabilidade Genômica , Camundongos Transgênicos , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Mutagênese Insercional , Simportadores/genética , Células Vero
5.
PLoS One ; 13(10): e0199339, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30339670

RESUMO

Laboratory animals are commonly anesthetized to prevent pain and distress and to provide safe handling. Anesthesia procedures are well-developed for common laboratory mammals, but not as well established in reptiles. We assessed the performance of intramuscularly injected tiletamine (dissociative anesthetic) and zolazepam (benzodiazepine sedative) in fixed combination (2 mg/kg and 3 mg/kg) in comparison to 2 mg/kg of midazolam (benzodiazepine sedative) in ball pythons (Python regius). We measured heart and respiratory rates and quantified induction parameters (i.e., time to loss of righting reflex, time to loss of withdrawal reflex) and recovery parameters (i.e., time to regain righting reflex, withdrawal reflex, normal behavior). Mild decreases in heart and respiratory rates (median decrease of <10 beats per minute and <5 breaths per minute) were observed for most time points among all three anesthetic dose groups. No statistically significant difference between the median time to loss of righting reflex was observed among animals of any group (p = 0.783). However, the withdrawal reflex was lost in all snakes receiving 3mg/kg of tiletamine+zolazepam but not in all animals of the other two groups (p = 0.0004). In addition, the time for animals to regain the righting reflex and resume normal behavior was longer in the drug combination dose groups compared to the midazolam group (p = 0.0055). Our results indicate that midazolam is an adequate sedative for ball pythons but does not suffice to achieve reliable immobilization or anesthesia, whereas tiletamine+zolazepam achieves short-term anesthesia in a dose-dependent manner.


Assuntos
Boidae , Imobilização/veterinária , Midazolam/farmacologia , Tiletamina/farmacologia , Zolazepam/farmacologia , Anestésicos Dissociativos/administração & dosagem , Anestésicos Dissociativos/farmacologia , Animais , Esquema de Medicação , Combinação de Medicamentos , Feminino , Frequência Cardíaca/efeitos dos fármacos , Imobilização/métodos , Injeções Intramusculares , Masculino , Midazolam/administração & dosagem , Respiração/efeitos dos fármacos , Tiletamina/administração & dosagem , Zolazepam/administração & dosagem
6.
Inhal Toxicol ; 28(14): 670-676, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27919178

RESUMO

For inhalational studies and aerosol exposures to viruses, head-out plethysmography acquisition has been traditionally used for the determination of estimated inhaled dose in anesthetized nonhuman primates prior to or during an aerosol exposure. A pressure drop across a pneumotachograph is measured within a sealed chamber during inspiration/exhalation of the nonhuman primate, generating respiratory values and breathing frequencies. Due to the fluctuation of depth of anesthesia, pre-exposure respiratory values can be variable, leading to less precise and accurate dosing calculations downstream. Although an anesthesia infusion pump may help stabilize the depth of sedation, pumps are difficult to use within a sealed head-out plethysmography chamber. Real-time, head-out plethysmography acquisition could increase precision and accuracy of the measurements, but the bulky equipment needed for head-out plethysmography precludes real-time use inside a Class III biological safety cabinet, where most aerosol exposures occur. However, the respiratory inductive plethysmography (RIP) acquisition method measures the same respiratory parameters by detecting movement of the chest and abdomen during breathing using two elastic bands within the Class III biological safety cabinet. As respiratory values are relayed to a computer for software integration and analysis real-time, adjustment of aerosol exposure duration is based on the depth of sedation of the animal. The objective of this study was to compare values obtained using two methodologies (pre-exposure head-out plethysmography and real-time RIP). Transitioning to RIP technology with real-time acquisition provides more consistent, precise, and accurate aerosol dosing by reducing reported errors in respiratory values from anesthesia variability when using pre-exposure head-out plethysmography acquisition.


Assuntos
Pletismografia/métodos , Respiração , Testes de Toxicidade/métodos , Administração por Inalação , Aerossóis/administração & dosagem , Anestesia , Animais , Contenção de Riscos Biológicos , Feminino , Macaca mulatta , Masculino , Volume de Ventilação Pulmonar
7.
J Vis Exp ; (116)2016 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27768081

RESUMO

Work in a biosafety level 4 (BSL-4) containment laboratory requires time and great attention to detail. The same work that is done in a BSL-2 laboratory with non-high-consequence pathogens will take significantly longer in a BSL-4 setting. This increased time requirement is due to a multitude of factors that are aimed at protecting the researcher from laboratory-acquired infections, the work environment from potential contamination and the local community from possible release of high-consequence pathogens. Inside the laboratory, movement is restricted due to air hoses attached to the mandatory full-body safety suits. In addition, disinfection of every item that is removed from Class II biosafety cabinets (BSCs) is required. Laboratory specialists must be trained in the practices of the BSL-4 laboratory and must show high proficiency in the skills they are performing. The focus of this article is to outline proper procedures and techniques to ensure laboratory biosafety and experimental accuracy using a standard viral plaque assay as an example procedure. In particular, proper techniques to work safely in a BSL-4 environment when performing an experiment will be visually emphasized. These techniques include: setting up a Class II BSC for experiments, proper cleaning of the Class II BSC when finished working, waste management and safe disposal of waste generated inside a BSL-4 laboratory, and the removal of inactivated samples from inside a BSL-4 laboratory to the BSL-2 laboratory.


Assuntos
Contenção de Riscos Biológicos , Laboratórios , Segurança , Ensaio de Placa Viral , Medicina Geral , Eliminação de Resíduos de Serviços de Saúde
8.
J Vis Exp ; (116)2016 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27768036

RESUMO

Aerosol or inhalational studies of high-consequence pathogens have recently been increasing in number due to the perceived threat of intentional aerosol releases or unexpected natural aerosol transmission. Specific laboratories designed to perform these experiments require tremendous engineering controls to provide a safe and secure working environment and constant systems maintenance to sustain functionality. Class III biosafety cabinets, also referred to as gloveboxes, are gas-tight enclosures with non-opening windows. These cabinets are maintained under negative pressure by double high-efficiency-particulate-air (HEPA)-filtered exhaust systems and are the ideal primary containment for housing aerosolization equipment. A well planned workflow between staff members within high containment from, for instance, an animal biosafety level-4 (ABSL-4) suit laboratory to the ABSL-4 cabinet laboratory is a crucial component for successful experimentation. For smooth study execution, establishing a communication network, moving equipment and subjects, and setting up and placing equipment, requires staff members to meticulously plan procedures prior to study initiation. Here, we provide an overview and a visual representation of how aerobiology research is conducted at the National Institutes of Health, National Institute of Allergy and Infectious Diseases Integrated Research Facility at Fort Detrick, Maryland, USA, within an ABSL-4 environment.


Assuntos
Aerossóis , Contenção de Riscos Biológicos , Laboratórios , Segurança , Movimentos do Ar , Animais , Comunicação , Ambiente Controlado , Equipamentos e Provisões , Humanos
9.
J Vis Exp ; (116)2016 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27768056

RESUMO

Medical imaging using animal models for human diseases has been utilized for decades; however, until recently, medical imaging of diseases induced by high-consequence pathogens has not been possible. In 2014, the National Institutes of Health, National Institute of Allergy and Infectious Diseases, Integrated Research Facility at Fort Detrick opened an Animal Biosafety Level 4 (ABSL-4) facility to assess the clinical course and pathology of infectious diseases in experimentally infected animals. Multiple imaging modalities including computed tomography (CT), magnetic resonance imaging, positron emission tomography, and single photon emission computed tomography are available to researchers for these evaluations. The focus of this article is to describe the workflow for safely obtaining a CT image of a live guinea pig in an ABSL-4 facility. These procedures include animal handling, anesthesia, and preparing and monitoring the animal until recovery from sedation. We will also discuss preparing the imaging equipment, performing quality checks, communication methods from "hot side" (containing pathogens) to "cold side," and moving the animal from the holding room to the imaging suite.


Assuntos
Contenção de Riscos Biológicos , Laboratórios , Segurança , Tomografia Computadorizada por Raios X , Anestesia/veterinária , Bem-Estar do Animal , Animais , Modelos Animais de Doenças , Cobaias , Humanos , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons
10.
J Vis Exp ; (116)2016 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27768063

RESUMO

Biosafety level 4 (BSL-4) suit laboratories are specifically designed to study high-consequence pathogens for which neither infection prophylaxes nor treatment options exist. The hallmarks of these laboratories are: custom-designed airtight doors, dedicated supply and exhaust airflow systems, a negative-pressure environment, and mandatory use of positive-pressure ("space") suits. The risk for laboratory specialists working with highly pathogenic agents is minimized through rigorous training and adherence to stringent safety protocols and standard operating procedures. Researchers perform the majority of their work in BSL-2 laboratories and switch to BSL-4 suit laboratories when work with a high-consequence pathogen is required. Collaborators and scientists considering BSL-4 projects should be aware of the challenges associated with BSL-4 research both in terms of experimental technical limitations in BSL-4 laboratory space and the increased duration of such experiments. Tasks such as entering and exiting the BSL-4 suit laboratories are considerably more complex and time-consuming compared to BSL-2 and BSL-3 laboratories. The focus of this particular article is to address basic biosafety concerns and describe the entrance and exit procedures for the BSL-4 laboratory at the NIH/NIAID Integrated Research Facility at Fort Detrick. Such procedures include checking external systems that support the BSL-4 laboratory, and inspecting and donning positive-pressure suits, entering the laboratory, moving through air pressure-resistant doors, and connecting to air-supply hoses. We will also discuss moving within and exiting the BSL-4 suit laboratories, including using the chemical shower and removing and storing positive-pressure suits.


Assuntos
Contenção de Riscos Biológicos , Laboratórios , Roupa de Proteção , Humanos , Pessoal de Laboratório , Segurança
11.
J Gen Virol ; 97(8): 1942-1954, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27166137

RESUMO

We previously demonstrated that small-particle (0.5-3.0 µm) aerosol infection of rhesus monkeys (Macaca mulatta) with cowpox virus (CPXV)-Brighton Red (BR) results in fulminant respiratory tract disease characterized by severe lung parenchymal pathology but only limited systemic virus dissemination and limited classic epidermal pox-like lesion development (Johnson et al., 2015). Based on these results, and to further develop CPXV as an improved model of human smallpox, we evaluated a novel large-particle aerosol (7.0-9.0 µm) exposure of rhesus monkeys to CPXV-BR and monitored for respiratory tract disease by serial computed tomography (CT). As expected, the upper respiratory tract and large airways were the major sites of virus-induced pathology following large-particle aerosol exposure. Large-particle aerosol CPXV exposure of rhesus macaques resulted in severe upper airway and large airway pathology with limited systemic dissemination.


Assuntos
Aerossóis , Vírus da Varíola Bovina/patogenicidade , Varíola Bovina/patologia , Varíola Bovina/virologia , Modelos Animais de Doenças , Infecções Respiratórias/patologia , Infecções Respiratórias/virologia , Animais , Macaca mulatta , Infecções Respiratórias/diagnóstico por imagem , Tomografia Computadorizada por Raios X
12.
Antiviral Res ; 129: 120-129, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26923881

RESUMO

BACKGROUND: Influenza results in up to 500,000 deaths annually. Seasonal influenza vaccines have an estimated 60% effectiveness, but provide little or no protection against novel subtypes, and may be less protective in high-risk groups. Neuraminidase inhibitors are recommended for the treatment of severe influenza infection, but are not proven to reduce mortality in severe disease. Preclinical models of severe influenza infection that closely correlate to human disease are needed to assess efficacy of new vaccines and therapeutics. METHODS: We developed a nonhuman primate model of influenza and bacterial co-infection that recapitulates severe pneumonia in humans. Animals were infected with influenza A virus via intra-bronchial or small-particle aerosol inoculation, methicillin-resistant Staphylococcus aureus, or co-infected with influenza and methicillin-resistant S. aureus combined. We assessed the severity of disease in animals over the course of our study using tools available to evaluate critically ill human patients including high-resolution computed tomography imaging of the lungs, arterial blood gas analyses, and bronchoalveolar lavage. RESULTS: Using an intra-bronchial route of inoculation we successfully induced severe pneumonia following influenza infection alone and following influenza and bacterial co-infection. Peak illness was observed at day 6 post-influenza infection, manifested by bilateral pulmonary infiltrates and hypoxemia. The timing of radiographic and physiologic manifestations of disease in our model closely match those observed in severe human influenza infection. DISCUSSION: This was the first nonhuman primate study of influenza and bacterial co-infection where high-resolution computed tomography scanning of the lungs was used to quantitatively assess pneumonia over the course of illness and where hypoxemia was correlated with pneumonia severity. With additional validation this model may serve as a pathway for regulatory approval of vaccines and therapeutics for the prevention and treatment of severe influenza pneumonia.


Assuntos
Coinfecção , Vírus da Influenza A , Modelos Animais , Infecções por Orthomyxoviridae/complicações , Pneumonia Estafilocócica/complicações , Pneumonia Viral/complicações , Animais , Humanos , Vírus da Influenza A/patogenicidade , Vacinas contra Influenza , Influenza Humana/complicações , Influenza Humana/microbiologia , Pulmão/microbiologia , Pulmão/patologia , Pulmão/virologia , Macaca mulatta , Masculino , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada
13.
Arch Virol ; 161(3): 755-68, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26608064

RESUMO

The family Arteriviridae presently includes a single genus Arterivirus. This genus includes four species as the taxonomic homes for equine arteritis virus (EAV), lactate dehydrogenase-elevating virus (LDV), porcine respiratory and reproductive syndrome virus (PRRSV), and simian hemorrhagic fever virus (SHFV), respectively. A revision of this classification is urgently needed to accommodate the recent description of eleven highly divergent simian arteriviruses in diverse African nonhuman primates, one novel arterivirus in an African forest giant pouched rat, and a novel arterivirus in common brushtails in New Zealand. In addition, the current arterivirus nomenclature is not in accordance with the most recent version of the International Code of Virus Classification and Nomenclature. Here we outline an updated, amended, and improved arterivirus taxonomy based on current data. Taxon-specific sequence cut-offs are established relying on a newly established open reading frame 1b phylogeny and pairwise sequence comparison (PASC) of coding-complete arterivirus genomes. As a result, the current genus Arterivirus is replaced by five genera: Equartevirus (for EAV), Rodartevirus (LDV + PRRSV), Simartevirus (SHFV + simian arteriviruses), Nesartevirus (for the arterivirus from forest giant pouched rats), and Dipartevirus (common brushtail arterivirus). The current species Porcine reproductive and respiratory syndrome virus is divided into two species to accommodate the clear divergence of the European and American "types" of PRRSV, both of which now receive virus status. The current species Simian hemorrhagic fever virus is divided into nine species to accommodate the twelve known simian arteriviruses. Non-Latinized binomial species names are introduced to replace all current species names to clearly differentiate them from virus names, which remain largely unchanged.


Assuntos
Arteriviridae/classificação , Arteriviridae/isolamento & purificação , Infecções por Vírus de RNA/veterinária , Arteriviridae/genética , Análise por Conglomerados , Genoma Viral , Fases de Leitura Aberta , Filogenia , RNA Viral/genética , Homologia de Sequência , Terminologia como Assunto
14.
Inhal Toxicol ; 27(5): 247-53, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25970823

RESUMO

Aerosol droplets or particles produced from infected respiratory secretions have the potential to infect another host through inhalation. These respiratory particles can be polydisperse and range from 0.05 to 500 µm in diameter. Animal models of infection are generally established to facilitate the potential licensure of candidate prophylactics and/or therapeutics. Consequently, aerosol-based animal infection models are needed to properly study and counter airborne infections. Ideally, experimental aerosol exposure should reliably result in animal disease that faithfully reproduces the modeled human disease. Few studies have been performed to explore the relationship between exposure particle size and induced disease course for infectious aerosol particles. The center flow tangential aerosol generator (CenTAG™) produces large-particle aerosols capable of safely delivering a variety of infectious aerosols to non-human primates (NHPs) within a Class III Biological Safety Cabinet (BSC) for establishment or refinement of NHP infectious disease models. Here, we report the adaptation of this technology to the Animal Biosafety Level 4 (ABSL-4) environment for the future study of high-consequence viral pathogens and the characterization of CenTAG™-created sham (no animal, no virus) aerosols using a variety of viral growth media and media supplements.


Assuntos
Aerossóis/administração & dosagem , Testes de Toxicidade/instrumentação , Administração por Inalação , Animais , Tamanho da Partícula , Primatas , Testes de Toxicidade/métodos
15.
J Virol ; 89(15): 8082-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25972539

RESUMO

Simian hemorrhagic fever (SHF) is lethal for macaques. Based on clinical presentation and serological diagnosis, all reported SHF outbreaks were thought to be caused by different strains of the same virus, simian hemorrhagic fever virus (SHFV; Arteriviridae). Here we show that the SHF outbreaks in Sukhumi in 1964 and in Alamogordo in 1989 were caused not by SHFV but by two novel divergent arteriviruses. Our results indicate that multiple divergent simian arteriviruses can cause SHF.


Assuntos
Infecções por Arterivirus/veterinária , Arterivirus/isolamento & purificação , Febres Hemorrágicas Virais/veterinária , Macaca/virologia , Doenças dos Primatas/virologia , Sequência de Aminoácidos , Animais , Arterivirus/classificação , Arterivirus/genética , Arterivirus/fisiologia , Infecções por Arterivirus/história , Infecções por Arterivirus/virologia , Evolução Molecular , Febres Hemorrágicas Virais/história , Febres Hemorrágicas Virais/virologia , História do Século XX , Humanos , Dados de Sequência Molecular , Filogenia , Doenças dos Primatas/história , Homologia de Sequência de Aminoácidos , Proteínas Virais/química , Proteínas Virais/genética
16.
Virology ; 481: 124-35, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25776759

RESUMO

Cowpox virus (CPXV) inoculation of nonhuman primates (NHPs) has been suggested as an alternate model for smallpox (Kramski et al., 2010, PLoS One, 5, e10412). Previously, we have demonstrated that intrabronchial inoculation of CPXV-Brighton Red (CPXV-BR) into cynomolgus monkeys resulted in a disease that shared many similarities to smallpox; however, severe respiratory tract disease was observed (Smith et al., 2011, J. Gen. Virol.). Here we describe the course of disease after small particle aerosol exposure of rhesus monkeys using computed tomography (CT) to monitor respiratory disease progression. Subjects developed a severe respiratory disease that was uniformly lethal at 5.7 log10 PFU of CPXV-BR. CT indicated changes in lung architecture that correlated with changes in peripheral blood monocytes and peripheral oxygen saturation. While the small particle aerosol inoculation route does not accurately mimic human smallpox, the data suggest that CT can be used as a tool to monitor real-time disease progression for evaluation of animal models for human diseases.


Assuntos
Vírus da Varíola Bovina/fisiologia , Modelos Animais de Doenças , Macaca mulatta , Doenças Respiratórias/virologia , Aerossóis/análise , Animais , Varíola Bovina/imunologia , Varíola Bovina/mortalidade , Varíola Bovina/patologia , Varíola Bovina/virologia , Vírus da Varíola Bovina/patogenicidade , Feminino , Humanos , Masculino , Monócitos/virologia , Sistema Respiratório/imunologia , Sistema Respiratório/patologia , Sistema Respiratório/virologia , Doenças Respiratórias/imunologia , Doenças Respiratórias/mortalidade , Doenças Respiratórias/patologia , Virulência
17.
J Virol ; 89(1): 844-56, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25355889

RESUMO

UNLABELLED: Simian hemorrhagic fever virus (SHFV) causes a severe and almost uniformly fatal viral hemorrhagic fever in Asian macaques but is thought to be nonpathogenic for humans. To date, the SHFV life cycle is almost completely uncharacterized on the molecular level. Here, we describe the first steps of the SHFV life cycle. Our experiments indicate that SHFV enters target cells by low-pH-dependent endocytosis. Dynamin inhibitors, chlorpromazine, methyl-ß-cyclodextrin, chloroquine, and concanamycin A dramatically reduced SHFV entry efficiency, whereas the macropinocytosis inhibitors EIPA, blebbistatin, and wortmannin and the caveolin-mediated endocytosis inhibitors nystatin and filipin III had no effect. Furthermore, overexpression and knockout study and electron microscopy results indicate that SHFV entry occurs by a dynamin-dependent clathrin-mediated endocytosis-like pathway. Experiments utilizing latrunculin B, cytochalasin B, and cytochalasin D indicate that SHFV does not hijack the actin polymerization pathway. Treatment of target cells with proteases (proteinase K, papain, α-chymotrypsin, and trypsin) abrogated entry, indicating that the SHFV cell surface receptor is a protein. Phospholipases A2 and D had no effect on SHFV entry. Finally, treatment of cells with antibodies targeting CD163, a cell surface molecule identified as an entry factor for the SHFV-related porcine reproductive and respiratory syndrome virus, diminished SHFV replication, identifying CD163 as an important SHFV entry component. IMPORTANCE: Simian hemorrhagic fever virus (SHFV) causes highly lethal disease in Asian macaques resembling human illness caused by Ebola or Lassa virus. However, little is known about SHFV's ecology and molecular biology and the mechanism by which it causes disease. The results of this study shed light on how SHFV enters its target cells. Using electron microscopy and inhibitors for various cellular pathways, we demonstrate that SHFV invades cells by low-pH-dependent, actin-independent endocytosis, likely with the help of a cellular surface protein.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Arterivirus/fisiologia , Endocitose , Interações Hospedeiro-Patógeno , Receptores de Superfície Celular/metabolismo , Receptores Virais/metabolismo , Internalização do Vírus , Animais , Linhagem Celular , Chlorocebus aethiops
18.
Genome Announc ; 2(5)2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25301647

RESUMO

Simian hemorrhagic fever virus (SHFV) variant NIH LVR42-0/M6941 is the only remaining SHFV in culture, and only a single genome sequence record exists in GenBank/RefSeq. We compared the genomic sequence of NIH LVR42-0/M6941 acquired from the ATCC in 2011 to NIH LVR42-0/M6941 genomes sequenced directly from nonhuman primates experimentally infected in 1989.

19.
Viruses ; 6(9): 3663-82, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25256396

RESUMO

Sequence determination of complete or coding-complete genomes of viruses is becoming common practice for supporting the work of epidemiologists, ecologists, virologists, and taxonomists. Sequencing duration and costs are rapidly decreasing, sequencing hardware is under modification for use by non-experts, and software is constantly being improved to simplify sequence data management and analysis. Thus, analysis of virus disease outbreaks on the molecular level is now feasible, including characterization of the evolution of individual virus populations in single patients over time. The increasing accumulation of sequencing data creates a management problem for the curators of commonly used sequence databases and an entry retrieval problem for end users. Therefore, utilizing the data to their fullest potential will require setting nomenclature and annotation standards for virus isolates and associated genomic sequences. The National Center for Biotechnology Information's (NCBI's) RefSeq is a non-redundant, curated database for reference (or type) nucleotide sequence records that supplies source data to numerous other databases. Building on recently proposed templates for filovirus variant naming [ ()////-], we report consensus decisions from a majority of past and currently active filovirus experts on the eight filovirus type variants and isolates to be represented in RefSeq, their final designations, and their associated sequences.


Assuntos
Bases de Dados de Ácidos Nucleicos , Filoviridae/genética , Evolução Molecular , Filoviridae/classificação , Humanos , Seleção Genética
20.
Pathog Dis ; 71(2): 213-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24687975

RESUMO

Scientists at the National Institute of Allergy and Infectious Diseases Integrated Research Facility at Fort Detrick, Frederick, Maryland, coordinate and facilitate preclinical research on infectious diseases to develop medical countermeasures for high-consequence pathogens. This facility is unique in that it is the only maximum containment laboratory in the world where conventional and molecular medical imaging equipments are incorporated into the design of the facility. This capability provides investigators with unique tools to dissect disease pathogenesis, evaluate the ability of animal models to recapitulate human disease, and test candidate countermeasures. Importantly, advanced molecular imaging has the potential to provide alternative endpoints to lethality. Using these alternative endpoints, investigators can reduce the number of animals used in experiments and evaluate countermeasures in sublethal models. With the incorporation of medical imaging modalities, a clinical laboratory modeled after those existing in hospitals, and a highly trained veterinary medicine team, IRF-Frederick is uniquely suited to advance our understanding of emerging infectious diseases and to facilitate the development of medical countermeasures and clinical care paradigms previously considered impossible.


Assuntos
Pesquisa Biomédica/métodos , Controle de Doenças Transmissíveis/métodos , Doenças Transmissíveis/diagnóstico , Doenças Transmissíveis/terapia , Contenção de Riscos Biológicos , Saúde Ocupacional , Experimentação Animal , Animais , Técnicas de Laboratório Clínico/métodos , Humanos , Maryland , National Institute of Allergy and Infectious Diseases (U.S.) , Imagem Óptica/métodos , Estados Unidos , Medicina Veterinária/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...