Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 109(3): 033603, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22861848

RESUMO

We report the experimental realization of an optical trap that localizes single Cs atoms ≃215 nm from the surface of a dielectric nanofiber. By operating at magic wavelengths for pairs of counterpropagating red- and blue-detuned trapping beams, differential scalar light shifts are eliminated, and vector shifts are suppressed by ≈250. We thereby measure an absorption linewidth Γ/2π=5.7±0.1 MHz for the Cs 6S(1/2), F=4→6P(3/2), F'=5 transition, where Γ0/2π=5.2 MHz in free space. An optical depth d≃66 is observed, corresponding to an optical depth per atom d1≃0.08. These advances provide an important capability for the implementation of functional quantum optical networks and precision atomic spectroscopy near dielectric surfaces.

2.
Phys Rev Lett ; 105(2): 020401, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20867686

RESUMO

We perform Ramsey spectroscopy on the ground state of ultracold 87Rb atoms magnetically trapped on a chip in the Knudsen regime. Field inhomogeneities over the sample should limit the 1/e contrast decay time to about 3 s, while decay times of 58 ± 12 s are actually observed. We explain this surprising result by a spin self-rephasing mechanism induced by the identical spin rotation effect originating from particle indistinguishability. We propose a theory of this synchronization mechanism and obtain good agreement with the experimental observations. The effect is general and may appear in other physical systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA