Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Mater Today Bio ; 25: 100950, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38318479

RESUMO

Nerve injuries pose a drastic threat to nerve mobility and sensitivity and lead to permanent dysfunction due to low regenerative capacity of mature neurons. The electrical stimuli that can be provided by electroactive materials are some of the most effective tools for the formation of soft tissues, including nerves. Electric output can provide a distinctly favorable bioelectrical microenvironment, which is especially relevant for the nervous system. Piezoelectric biomaterials have attracted attention in the field of neural tissue engineering owing to their biocompatibility and ability to generate piezoelectric surface charges. In this review, an outlook of the most recent achievements in the field of piezoelectric biomaterials is described with an emphasis on piezoelectric polymers for neural tissue engineering. First, general recommendations for the design of an optimal nerve scaffold are discussed. Then, specific mechanisms determining nerve regeneration via piezoelectric stimulation are considered. Activation of piezoelectric responses via natural body movements, ultrasound, and magnetic fillers is also examined. The use of magnetoelectric materials in combination with alternating magnetic fields is thought to be the most promising due to controllable reproducible cyclic deformations and deep tissue permeation by magnetic fields without tissue heating. In vitro and in vivo applications of nerve guidance scaffolds and conduits made of various piezopolymers are reviewed too. Finally, challenges and prospective research directions regarding piezoelectric biomaterials promoting nerve regeneration are discussed. Thus, the most relevant scientific findings and strategies in neural tissue engineering are described here, and this review may serve as a guideline both for researchers and clinicians.

2.
ACS Appl Bio Mater ; 7(2): 1095-1114, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38270084

RESUMO

Peripheral nerve injury poses a threat to the mobility and sensitivity of a nerve, thereby leading to permanent function loss due to the low regenerative capacity of mature neurons. To date, the most widely clinically applied approach to bridging nerve injuries is autologous nerve grafting, which faces challenges such as donor site morbidity, donor shortages, and the necessity of a second surgery. An effective therapeutic strategy is urgently needed worldwide to overcome the current limitations. Herein, a magnetic nerve guidance conduit (NGC) based on biocompatible biodegradable poly(3-hydroxybutyrate) (PHB) and 8 wt % of magnetite nanoparticles modified by citric acid (Fe3O4-CA) was fabricated by electrospinning. The crystalline structure of NGCs was studied by X-ray diffraction, which indicated an enlarged ß-phase of PHB in the composite conduit compared to a pure PHB conduit. Tensile tests revealed greater ductility of PHB/Fe3O4-CA: the composite conduit has Young's modulus of 221 ± 52 MPa and an elongation at break of 28.6 ± 2.9%, comparable to clinical materials. Saturation magnetization (σs) of Fe3O4-CA and PHB/Fe3O4-CA is 61.88 ± 0.29 and 7.44 ± 0.07 emu/g, respectively. The water contact angle of the PHB/Fe3O4-CA conduit is lower as compared to pure PHB, while surface free energy (σ) is significantly higher, which was attributed to higher surface roughness and an amorphous phase as well as possible PHB/Fe3O4-CA interface interactions. In vitro, the conduits supported the proliferation of rat mesenchymal stem cells (rMSCs) and SH-SY5Y cells in a low-frequency magnetic field (0.67 Hz, 68 mT). In vivo, the conduits were used to bridge damaged sciatic nerves in rats; pure PHB and composite PHB/Fe3O4-CA conduits did not cause acute inflammation and performed a barrier function, which promotes nerve regeneration. Thus, these conduits are promising as implants for the regeneration of peripheral nerves.


Assuntos
Nanopartículas de Magnetita , Neuroblastoma , Traumatismos dos Nervos Periféricos , Poli-Hidroxibutiratos , Ratos , Humanos , Animais , Traumatismos dos Nervos Periféricos/terapia , Ácido 3-Hidroxibutírico/farmacologia , Materiais Biocompatíveis/farmacologia , Nanopartículas de Magnetita/uso terapêutico , Hidroxibutiratos/farmacologia , Regeneração Nervosa/fisiologia
3.
Biochemistry (Mosc) ; 88(10): 1544-1554, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38105023

RESUMO

Retinal-containing light-sensitive proteins - rhodopsins - are found in many microorganisms. Interest in them is largely explained by their role in light energy storage and photoregulation in microorganisms, as well as the prospects for their use in optogenetics to control neuronal activity, including treatment of various diseases. One of the representatives of microbial rhodopsins is ESR, the retinal protein of Exiguobacterium sibiricum. What distinguishes ESR from homologous proteins is the presence of a lysine residue (Lys96) as a proton donor for the Schiff base. This feature, along with the hydrogen bond of the proton acceptor Asp85 with the His57 residue, determines functional characteristics of ESR as a proton pump. This review examines the results of ESR studies conducted using various methods, including direct electrometry. Comparison of the obtained data with the results of structural studies and with other retinal proteins allows us to draw conclusions about the mechanisms of transport of hydrogen ions in ESR and similar retinal proteins.


Assuntos
Bacteriorodopsinas , Prótons , Transporte de Íons , Bombas de Próton/química , Bombas de Próton/metabolismo , Rodopsinas Microbianas/metabolismo , Bacteriorodopsinas/química
4.
Biochemistry (Mosc) ; 88(5): 716-722, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37331717

RESUMO

Cell-surface display using anchor motifs of outer membrane proteins allows exposure of target peptides and proteins on the surface of microbial cells. Previously, we obtained and characterized highly catalytically active recombinant oligo-α-1,6-glycosidase from the psychrotrophic bacterium Exiguobacterium sibiricum (EsOgl). It was also shown that the autotransporter AT877 from Psychrobacter cryohalolentis and its deletion variants efficiently displayed type III fibronectin (10Fn3) domain 10 on the surface of Escherichia coli cells. The aim of the work was to obtain an AT877-based system for displaying EsOgl on the surface of bacterial cells. The genes for the hybrid autotransporter EsOgl877 and its deletion mutants EsOgl877Δ239 and EsOgl877Δ310 were constructed, and the enzymatic activity of EsOgl877 was investigated. Cells expressing this protein retained ~90% of the enzyme maximum activity within a temperature range of 15-35°C. The activity of cells expressing EsOgl877Δ239 and EsOgl877Δ310 was 2.7 and 2.4 times higher, respectively, than of the cells expressing the full-size AT. Treatment of cells expressing EsOgl877 deletion variants with proteinase K showed that the passenger domain localized to the cell surface. These results can be used for further optimization of display systems expressing oligo-α-1,6-glycosidase and other heterologous proteins on the surface of E. coli cells.


Assuntos
Escherichia coli , Sistemas de Secreção Tipo V , Escherichia coli/metabolismo , Sistemas de Secreção Tipo V/metabolismo , Glicosídeo Hidrolases/metabolismo
5.
Commun Chem ; 6(1): 88, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37130895

RESUMO

Proteorhodopsins (PRs), bacterial light-driven outward proton pumps comprise the first discovered and largest family of rhodopsins, they play a significant role in life on the Earth. A big remaining mystery was that up-to-date there was no described bacterial rhodopsins pumping protons at acidic pH despite the fact that bacteria live in different pH environment. Here we describe conceptually new bacterial rhodopsins which are operating as outward proton pumps at acidic pH. A comprehensive function-structure study of a representative of a new clade of proton pumping rhodopsins which we name "mirror proteorhodopsins", from Sphingomonas paucimobilis (SpaR) shows cavity/gate architecture of the proton translocation pathway rather resembling channelrhodopsins than the known rhodopsin proton pumps. Another unique property of mirror proteorhodopsins is that proton pumping is inhibited by a millimolar concentration of zinc. We also show that mirror proteorhodopsins are extensively represented in opportunistic multidrug resistant human pathogens, plant growth-promoting and zinc solubilizing bacteria. They may be of optogenetic interest.

6.
Int J Mol Sci ; 24(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37108532

RESUMO

Microbial rhodopsins comprise a diverse family of retinal-containing membrane proteins that convert absorbed light energy to transmembrane ion transport or sensory signals. Incorporation of these proteins in proteoliposomes allows their properties to be studied in a native-like environment; however, unidirectional protein orientation in the artificial membranes is rarely observed. We aimed to obtain proteoliposomes with unidirectional orientation using a proton-pumping retinal protein from Exiguobacterium sibiricum, ESR, as a model. Three ESR hybrids with soluble protein domains (mCherry or thioredoxin at the C-terminus and Caf1M chaperone at the N-terminus) were obtained and characterized. The photocycle of the hybrid proteins incorporated in proteoliposomes demonstrated a higher pKa of the M state accumulation compared to that of the wild-type ESR. Large negative electrogenic phases and an increase in the relative amplitude of kinetic components in the microsecond time range in the kinetics of membrane potential generation of ESR-Cherry and ESR-Trx indicate a decrease in the efficiency of transmembrane proton transport. On the contrary, Caf-ESR demonstrates a native-like kinetics of membrane potential generation and the corresponding electrogenic stages. Our experiments show that the hybrid with Caf1M promotes the unidirectional orientation of ESR in proteoliposomes.


Assuntos
Bacillaceae , Prótons , Bacillaceae/metabolismo , Bombas de Próton/metabolismo , Rodopsinas Microbianas/metabolismo
7.
Protein J ; 42(4): 408-420, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37002449

RESUMO

Xanthorhodopsin (XR) from Salinibacter ruber is a light-driven proton pump containing retinal and a light-harvesting carotenoid antenna salinixanthin. Previous structure-functional studies of XR were conducted using a protein isolated from the native host only due to the absence of heterologous expression in Escherichia coli. In this paper, we describe cell-free synthesis and incorporation in lipid-protein nanodiscs of the recombinant XR that demonstrated its principal compatibility with E. coli biosynthetic machinery. To produce XR in E. coli, three C-terminal deletion variants of this protein were constructed. In contrast to the full-length XR, their expression resulted in efficient synthesis in E. coli cells. However, cells producing recombinant XR variants bound retinal only upon growth in minimal medium, not in the rich one. The XR3 variant with deletion of ten C-terminal amino acid residues was obtained and characterized. Its absorption spectrum and photocycle kinetics were close to those reported for XR isolated from S. ruber membranes and bleached from salinixanthin. We have also constructed the first mutants of XR, H62M and D96N, and examined their properties.


Assuntos
Carotenoides , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Carotenoides/química , Carotenoides/metabolismo , Glicosídeos/química , Glicosídeos/metabolismo , Proteínas de Bactérias/química
8.
Int J Mol Sci ; 25(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38203380

RESUMO

The ability of materials to adhere bacteria on their surface is one of the most important aspects of their development and application in bioengineering. In this work, the effect of the properties of films and electrospun scaffolds made of composite materials based on biosynthetic poly(3-hydroxybutyrate) (PHB) with the addition of magnetite nanoparticles (MNP) and their complex with graphene oxide (MNP/GO) on the adhesion of E. coli and L. fermentum under the influence of a low-frequency magnetic field and without it was investigated. The physicochemical properties (crystallinity; surface hydrophilicity) of the materials were investigated by X-ray structural analysis, differential scanning calorimetry and "drop deposition" methods, and their surface topography was studied by scanning electron and atomic force microscopy. Crystal violet staining made it possible to reveal differences in the surface charge value and to study the adhesion of bacteria to it. It was shown that the differences in physicochemical properties of materials and the manifestation of magnetoactive properties of materials have a multidirectional effect on the adhesion of model microorganisms. Compared to pure PHB, the adhesion of E. coli to PHB-MNP/GO, and for L. fermentum to both composite materials, was higher. In the magnetic field, the adhesion of E. coli increased markedly compared to PHB-MNP/GO, whereas the effect on the adhesion of L. fermentum was reversed and was only evident in samples with PHB-MNP. Thus, the resultant factors enhancing and impairing the substrate binding of Gram-negative E. coli and Gram-positive L. fermentum turned out to be multidirectional, as they probably have different sensitivity to them. The results obtained will allow for the development of materials with externally controlled adhesion of bacteria to them for biotechnology and medicine.


Assuntos
Limosilactobacillus fermentum , Nanopartículas de Magnetita , Poli-Hidroxibutiratos , Ácido 3-Hidroxibutírico , Escherichia coli , Campos Magnéticos
9.
Biochemistry (Mosc) ; 87(11): 1327-1334, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36509722

RESUMO

The progress in optogenetics largely depends on the development of light-activated proteins as new molecular tools. Using cultured hippocampal neurons, we compared the properties of two light-activated cation channels - classical channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2) and recently described channelrhodopsin isolated from the alga Platymonas subcordiformis (PsChR2). PsChR2 ensured generation of action potentials by neurons when activated by the pulsed light stimulation with the frequencies up to 40-50 Hz, while the upper limit for CrChR2 was 20-30 Hz. An important advantage of PsChR2 compared to classical channelrhodopsin CrChR2 is the blue shift of its excitation spectrum, which opens the possibility for its application in all-optical electrophysiology experiments that require the separation of the maxima of the spectra of channelrhodopsins used for the stimulation of neurons and the maxima of the excitation spectra of various red fluorescent probes. We compared the response (generation of action potentials) of neurons expressing CrChR2 and PsChR2 to light stimuli at 530 and 550 nm commonly used for the excitation of red fluorescent probes. The 530-nm light was significantly (3.7 times) less efficient in the activation of neurons expressing PsChR2 vs. CrChR2-expressing neurons. The light at 550 nm, even at the maximal used intensity, failed to stimulate neurons expressing either of the studied opsins. This indicates that the PsChR2 channelrhodopsin from the alga P. subcordiformis is a promising optogenetic tool, both in terms of its frequency characteristics and possibility of its application for neuronal stimulation with a short-wavelength (blue, 470 nm) light accompanied by simultaneous recording of various physiological processes using fluorescent probes.


Assuntos
Clorófitas , Corantes Fluorescentes , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Optogenética , Cátions
10.
ACS Omega ; 7(45): 41392-41411, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36406497

RESUMO

This is a comprehensive study on the reinforcement of electrospun poly(3-hydroxybutyrate) (PHB) scaffolds with a composite filler of magnetite-reduced graphene oxide (Fe3O4-rGO). The composite filler promoted the increase of average fiber diameters and decrease of the degree of crystallinity of hybrid scaffolds. The decrease in the fiber diameter enhanced the ductility and mechanical strength of scaffolds. The surface electric potential of PHB/Fe3O4-rGO composite scaffolds significantly increased with increasing fiber diameter owing to a greater number of polar functional groups. The changes in the microfiber diameter did not have any influence on effective piezoresponses of composite scaffolds. The Fe3O4-rGO filler imparted high saturation magnetization (6.67 ± 0.17 emu/g) to the scaffolds. Thus, magnetic PHB/Fe3O4-rGO composite scaffolds both preserve magnetic properties and provide a piezoresponse, whereas varying the fiber diameter offers control over ductility and surface electric potential.

11.
Biochemistry (Mosc) ; 87(9): 932-939, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36180989

RESUMO

The autotransporter AT877 from Psychrobacter cryohalolentis belongs to the family of outer membrane proteins containing N-terminal passenger and C-terminal translocator domains that form the basis for the design of display systems on the surface of bacterial cells. It was shown in our previous study that the passenger domain of AT877 can be replaced by the cold-active esterase EstPc or the tenth domain of fibronectin type III (10Fn3). In order to increase efficiency of the 10Fn3 surface display in Escherichia coli cells, four deletion variants of the Fn877 hybrid autotransporter were obtained. It was demonstrated that all variants are present in the membrane of bacterial cells and facilitate binding of the antibodies specific against 10Fn3 on the cell surface. The highest level of binding is provided by the variants Δ239 and Δ310, containing four and seven beta-strands out of twelve that comprise the structure of the translocator domain. Using electrophoresis under semi-native conditions, presence of heat modifiability in the full-size Fn877 and its deletion variants was demonstrated, which indicated preservation of beta structure in their molecules. The obtained results could be used to optimize the bacterial display systems of 10Fn3, as well as of other heterologous passenger domains.


Assuntos
Escherichia coli , Sistemas de Secreção Tipo V , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Escherichia coli/genética , Escherichia coli/metabolismo , Esterases/metabolismo , Fibronectinas/metabolismo , Proteínas de Membrana/metabolismo , Psychrobacter , Sistemas de Secreção Tipo V/metabolismo
12.
Biophys Rev ; 14(4): 771-778, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36124261

RESUMO

Microbial rhodopsins are the family of retinal-containing proteins that perform primarily the light-driven transmembrane ion transport and sensory functions. They are widely distributed in nature and can be used for optogenetic control of the cellular activities by light. Functioning of microbial rhodopsins results in generation of the transmembrane electric potential in response to a flash that can be measured by direct time-resolved electrometry. This method was developed by L. Drachev and his colleagues at the Belozersky Institute and successfully applied in the functional studies of microbial rhodopsins. First measurements were performed using bacteriorhodopsin from Halobacterium salinarum-the prototype member of the microbial retinal protein family. Later, direct electrometric studies were conducted with proteorhodopsin from Exiguobacterium sibiricum (ESR), the sodium pump from Dokdonia, and other proteins. They allowed detailed characterization of the charge transfer steps during the photocycle of microbial rhodopsins and provided new insights for profound understanding of their mechanism of action.

14.
ACS Appl Bio Mater ; 5(8): 3999-4019, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35925883

RESUMO

Magnetically responsive composite polymer scaffolds have good potential for a variety of biomedical applications. In this work, electrospun composite scaffolds made of polyhydroxybutyrate (PHB) and magnetite (Fe3O4) particles (MPs) were studied before and after degradation in either PBS or a lipase solution. MPs of different sizes with high saturation magnetization were synthesized by the coprecipitation method followed by coating with citric acid (CA). Nanosized MPs were prone to magnetite-maghemite phase transformation during scaffold fabrication, as revealed by Raman spectroscopy; however, for CA-functionalized nanoparticles, the main phase was found to be magnetite, with some traces of maghemite. Submicron MPs were resistant to the magnetite-maghemite phase transformation. MPs did not significantly affect the morphology and diameter of PHB fibers. The scaffolds containing CA-coated MPs lost 0.3 or 0.2% of mass in the lipase solution and PBS, respectively, whereas scaffolds doped with unmodified MPs showed no mass changes after 1 month of incubation in either medium. In all electrospun scaffolds, no alterations of the fiber morphology were observed. Possible mechanisms of the crystalline-lamellar-structure changes in hybrid PHB/Fe3O4 scaffolds during hydrolytic and enzymatic degradation are proposed. It was revealed that particle size and particle surface functionalization affect the mechanical properties of the hybrid scaffolds. The addition of unmodified MPs increased scaffolds' ultimate strength but reduced elongation at break after the biodegradation, whereas simultaneous increases in both parameters were observed for composite scaffolds doped with CA-coated MPs. The highest saturation magnetization─higher than that published in the literature─was registered for composite PHB scaffolds doped with submicron MPs. All PHB scaffolds proved to be biocompatible, and the ones doped with nanosized MPs yielded faster proliferation of rat mesenchymal stem cells. In addition, all electrospun scaffolds were able to support angiogenesis in vivo at 30 days after implantation in Wistar rats.


Assuntos
Óxido Ferroso-Férrico , Alicerces Teciduais , Animais , Hidroxibutiratos , Lipase , Fenômenos Magnéticos , Poliésteres , Ratos , Ratos Wistar , Engenharia Tecidual/métodos , Alicerces Teciduais/química
15.
J Photochem Photobiol B ; 234: 112529, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35878544

RESUMO

Light-driven proton transport by microbial retinal proteins such as archaeal bacteriorhodopsin involves carboxylic residues as internal proton donors to the catalytic center which is a retinal Schiff base (SB). The proton donor, Asp96 in bacteriorhodopsin, supplies a proton to the transiently deprotonated Schiff base during the photochemical cycle. Subsequent proton uptake resets the protonated state of the donor. This two step process became a distinctive signature of retinal based proton pumps. Similar steps are observed also in many natural variants of bacterial proteorhodopsins and xanthorhodopsins where glutamic acid residues serve as a proton donor. Recently, however, an exception to this rule was found. A retinal protein from Exiguobacterium sibiricum, ESR, contains a Lys residue in place of Asp or Glu, which facilitates proton transfer from the bulk to the SB. Lys96 can be functionally replaced with the more common donor residues, Asp or Glu. Proton transfer to the SB in the mutants containing these replacements (K96E and K96D/A47T) is much faster than in the proteins lacking the proton donor (K96A and similar mutants), and in the case of K96D/A47T, comparable with that in the wild type, indicating that carboxylic residues can replace Lys96 as proton donors in ESR. We show here that there are important differences in the functioning of these residues in ESR from the way Asp96 functions in bacteriorhodopsin. Reprotonation of the SB and proton uptake from the bulk occur almost simultaneously during the M to N transition (as in the wild type ESR at neutral pH), whereas in bacteriorhodopsin these two steps are well separated in time and occur during the M to N and N to O transitions, respectively.


Assuntos
Bacteriorodopsinas , Prótons , Bacteriorodopsinas/química , Exiguobacterium , Concentração de Íons de Hidrogênio , Bombas de Próton/química , Bombas de Próton/metabolismo , Bases de Schiff/química
16.
Biomolecules ; 12(7)2022 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-35883522

RESUMO

This Special Issue of Biomolecules demonstrates the almost unlimited possibilities of modern protein engineering in gene expression, protein production and modification, as well as the design and creation of new proteins [...].


Assuntos
Engenharia de Proteínas
17.
Appl Biochem Biotechnol ; 193(11): 3672-3703, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34351586

RESUMO

Overproduction of the membrane proteins in Escherichia coli cells is a common approach to obtain sufficient material for their functional and structural studies. However, the efficiency of this process can be limited by toxic effects which decrease the viability of the host and lead to low yield of the product. During the expression of the esterase autotransporter AT877 from Psychrobacter cryohalolentis K5T, we observed significant growth inhibition of the C41(DE3) cells in comparison with the same cells producing other recombinant proteins. Induction of AT877 synthesis also resulted in the elevated expression of a magnesium transporter MgtA and decreased ATP content of the cells. To characterize the response to overexpression of the autotransporter in bacterial cells, we performed a comparative analysis of their proteomic profile by mass spectrometry. According to the obtained data, E. coli cells which synthesize AT877 experience complex stress condition presumably associated with secretion apparatus overloading and improper localization of the recombinant protein. Several response pathways were shown to be activated by AT877 overproduction including Cpx, PhoP/PhoQ, Psp, and σE The obtained results open new opportunities for optimization of the recombinant membrane protein expression in E. coli for structural studies and biotechnological applications.


Assuntos
Adenosina Trifosfatases , Proteínas de Bactérias , Escherichia coli , Expressão Gênica , Proteínas de Membrana Transportadoras , Psychrobacter/genética , Adenosina Trifosfatases/biossíntese , Adenosina Trifosfatases/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/biossíntese , Proteínas de Membrana Transportadoras/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
18.
Biomolecules ; 11(8)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34439895

RESUMO

A gene coding for a novel putative amylase, oligo-1,6-glucosidase from a psychrotrophic bacterium Exiguobacterium sibiricum from Siberian permafrost soil was cloned and expressed in Escherichia coli. The amino acid sequence of the predicted protein EsOgl and its 3D model displayed several features characteristic for the cold-active enzymes while possessing an unusually high number of proline residues in the loops-a typical feature of thermophilic enzymes. The activity of the purified recombinant protein was tested with p-nitrophenyl α-D-glucopyranoside as a substrate. The enzyme displayed a plateau-shaped temperature-activity profile with the optimum at 25 °C and a pronounced activity at low temperatures (50% of maximum activity at 5 °C). To improve the thermal stability at temperatures above 40 °C, we have introduced proline residues into four positions of EsOgl by site-directed mutagenesis according to "the proline rule". Two of the mutants, S130P and A109P demonstrated a three- and two-fold increased half-life at 45 °C. Moreover, S130P mutation led to a 60% increase in the catalytic rate constant. Combining the mutations resulted in a further increase in stability transforming the temperature-activity profile to a typical mesophilic pattern. In the most thermostable variant A109P/S130P/E176P, the half-life at 45 °C was increased from 11 min (wild-type) to 129 min.


Assuntos
Aminoácidos/química , Oligo-1,6-Glucosidase/química , Engenharia de Proteínas/métodos , Dicroísmo Circular , Clonagem Molecular , Temperatura Baixa , Biologia Computacional , Estabilidade Enzimática , Exiguobacterium/enzimologia , Glucosidases/genética , Glucosidases/metabolismo , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Mutagênese , Mutagênese Sítio-Dirigida , Mutação , Pergelissolo , Prolina/química , Proteínas Recombinantes/química , Temperatura
19.
J Phys Chem B ; 125(4): 995-1008, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33475375

RESUMO

The primary stages of the Exiguobacterium sibiricum rhodopsin (ESR) photocycle were investigated by femtosecond absorption laser spectroscopy in the spectral range of 400-900 nm with a time resolution of 25 fs. The dynamics of the ESR photoreaction were compared with the reactions of bacteriorhodopsin (bR) in purple membranes (bRPM) and in recombinant form (bRrec). The primary intermediates of the ESR photocycle were similar to intermediates I, J, and K in bacteriorhodopsin photoconversion. The CONTIN program was applied to analyze the characteristic times of the observed processes and to clarify the reaction scheme. A similar photoreaction pattern was observed for all studied retinal proteins, including two consecutive dynamic Stokes shift phases lasting ∼0.05 and ∼0.15 ps. The excited state decays through a femtosecond reactive pathway, leading to retinal isomerization and formation of product J, and a picosecond nonreactive pathway that leads only to the initial state. Retinal photoisomerization in ESR takes 0.69 ps, compared with 0.48 ps in bRPM and 0.74 ps in bRrec. The nonreactive excited state decay takes 5 ps in ESR and ∼3 ps in bR. We discuss the similarity of the primary reactions of ESR and other retinal proteins.


Assuntos
Bacteriorodopsinas , Bacteriorodopsinas/metabolismo , Exiguobacterium , Halobacterium salinarum , Isomerismo , Conformação Proteica , Rodopsina , Análise Espectral
20.
Biomolecules ; 11(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466452

RESUMO

The gene coding for a novel cold-active esterase PMGL3 was previously obtained from a Siberian permafrost metagenomic DNA library and expressed in Escherichia coli. We elucidated the 3D structure of the enzyme which belongs to the hormone-sensitive lipase (HSL) family. Similar to other bacterial HSLs, PMGL3 shares a canonical α/ß hydrolase fold and is presumably a dimer in solution but, in addition to the dimer, it forms a tetrameric structure in a crystal and upon prolonged incubation at 4 °C. Detailed analysis demonstrated that the crystal tetramer of PMGL3 has a unique architecture compared to other known tetramers of the bacterial HSLs. To study the role of the specific residues comprising the tetramerization interface of PMGL3, several mutant variants were constructed. Size exclusion chromatography (SEC) analysis of D7N, E47Q, and K67A mutants demonstrated that they still contained a portion of tetrameric form after heat treatment, although its amount was significantly lower in D7N and K67A compared to the wild type. Moreover, the D7N and K67A mutants demonstrated a 40 and 60% increase in the half-life at 40 °C in comparison with the wild type protein. Km values of these mutants were similar to that of the wt PMGL3. However, the catalytic constants of the E47Q and K67A mutants were reduced by ~40%.


Assuntos
Temperatura Baixa , Esterases/química , Multimerização Proteica , Sequência de Aminoácidos , Domínio Catalítico , Detergentes/farmacologia , Estabilidade Enzimática/efeitos dos fármacos , Esterases/metabolismo , Íons , Metais/farmacologia , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Cloreto de Sódio/farmacologia , Solventes , Homologia Estrutural de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...