Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 881: 163372, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37054791

RESUMO

Peru is the eighth largest producer of cacao beans globally, but high cadmium contents are constraining access to international markets which have set upper thresholds for permitted concentrations in chocolate and derivatives. Preliminary data have suggested that high cadmium concentrations in cacao beans are restricted to specific regions in the country, but to date no reliable maps exist of expected cadmium concentrations in soils and cacao beans. Drawing on >2000 representative samples of cacao beans and soils we developed multiple national and regional random forest models to develop predictive maps of cadmium in soil and cacao beans across the area suitable for cacao cultivation. Our model projections show that elevated concentrations of cadmium in cacao soils and beans are largely restricted to the northern parts of the country in the departments of Tumbes, Piura, Amazonas and Loreto, as well as some very localized pockets in the central departments of Huánuco and San Martin. Unsurprisingly, soil cadmium was the by far most important predictor of bean cadmium. Aside from the south-eastern to north-western spatial trend of increasing cadmium values in soils and beans, the most important predictors of both variables in nation-wide models were geology, rainfall seasonality, soil pH and rainfall. At regional level, alluvial deposits and mining operations were also associated with higher cadmium levels in cacao beans. Based on our predictive map of cadmium in cacao beans we estimate that while at a national level <20 % of cacao farming households might be impacted by the cadmium regulations, in the most affected department of Piura this could be as high as 89 %.


Assuntos
Cacau , Poluentes do Solo , Cádmio/análise , Solo/química , Peru , Cacau/química , Poluentes do Solo/análise
2.
Front Plant Sci ; 12: 621064, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868327

RESUMO

Ecosystem services of Amazonian forests are disproportionally produced by a limited set of hyperdominant tree species. Yet the spatial variation in the delivery of ecosystem services by individual hyperdominant species across their distribution ranges and corresponding environmental gradients is poorly understood. Here, we use the concept of habitat quality to unravel the effect of environmental gradients on seed production and aboveground biomass (AGB) of the Brazil nut, one of Amazonia's largest and most long-lived hyperdominants. We find that a range of climate and soil gradients create trade-offs between density and fitness of Brazil nut trees. Density responses to environmental gradients were in line with predictions under the Janzen-Connell and Herms-Mattson hypotheses, whereas tree fitness responses were in line with resource requirements of trees over their life cycle. These trade-offs resulted in divergent responses in area-based seed production and AGB. While seed production and AGB of individual trees (i.e., fitness) responded similarly to most environmental gradients, they showed opposite tendencies to tree density for almost half of the gradients. However, for gradients creating opposite fitness-density responses, area-based seed production was invariable, while trends in area-based AGB tended to mirror the response of tree density. We conclude that while the relation between environmental gradients and tree density is generally indicative of the response of AGB accumulation in a given area of forest, this is not necessarily the case for fruit production.

4.
Sci Rep ; 9(1): 3905, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30846824

RESUMO

Defining the optimal placement of areas for biodiversity conservation in developing nations remains a significant challenge. Our best methods for spatially targeting potential locations for biodiversity conservation rely heavily on extensive georeferenced species observation data which is often incomplete or lacking in developing nations. One possible solution is the use of surrogates that enable site assessments of potential biodiversity values which use either indicator taxa or abiotic variables, or both. Among the plethora of abiotic variables, soil carbon has previously been identified as a potentially powerful predictor for threatened biodiversity, but this has not yet been confirmed with direct observational data. Here we assess the potential value of soil carbon for spatial prediction of threatened species using direct measurements as well as a wide range of GIS derived abiotic values as surrogates for threatened plant species in the PEBANPA network of permanent plots in Southern Patagonia. We find that soil carbon significantly improves the performance of a biodiversity surrogate elaborated using abiotic variables to predict the presence of threatened species. Soil carbon could thus help to prioritize sites in conservation planning. Further, the results suggest that soil carbon on its own can be a much better surrogate than other abiotic variables when prioritization of sites for conservation are calibrated on increasingly small sets of observation plots. We call for the inclusion of soil carbon data in the elaboration of surrogates used to optimize conservation investments in the developing world.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA