Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 342: 140135, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37690561

RESUMO

Heavy metals' interactions with plumbing materials are complicated due to the differential formation of biofilms within pipes that can modulate, transform, and/or sequester heavy metals. This research aims to elucidate the mechanistic role of biofilm presence on Lead (Pb) accumulation onto crosslinked polyethylene (PEX-A), high-density polyethylene (HDPE), and copper potable water pipes. For this purpose, biofilms were grown on new pipes for three months. Five-day Pb exposure experiments were conducted to examine the kinetics of Pb accumulation onto the new and biofilm-laden pipes. Additionally, the influence of Pb initial concentration on the rate of its accumulation onto the pipes was examined. The results revealed greater biofilm biomass on the PEX-A pipes compared to the copper and HDPE pipes. More negative zeta potential was found for the biofilm-laden plastic pipes compared to the new plastic pipes. After five days of Pb exposure under stagnant conditions, the biofilm-laden PEX-A (980 µg m-2) and HDPE (1170 µg m-2) pipes accumulated more than three times the Pb surface loading compared to the new PEX-A (265 µg m-2) and HDPE pipes (329 µg m-2), respectively. However, under flow conditions, Pb accumulation on biofilm-laden plastic pipes was lower than on the new pipes. Moreover, with increasing the initial Pb concentration, greater rates of Pb surface accumulation were found for the biofilm-laden pipes compared to the new pipes under stagnant conditions. First-order kinetics model best described the Pb accumulation onto both new and biofilm-laden water pipes under both stagnant and flow conditions.

2.
AWWA Water Sci ; 3(5): 1-23, 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34938982

RESUMO

Per- and polyfluoroalkyl substances (PFAS), which are present in many waters, have detrimental impacts on human health and the environment. Reverse osmosis (RO) and nanofiltration (NF) have shown excellent PFAS separation performance in water treatment; however, these membrane systems do not destroy PFAS but produce concentrated residual streams that need to be managed. Complete destruction of PFAS in RO and NF concentrate streams is ideal, but long-term sequestration strategies are also employed. Because no single technology is adequate for all situations, a range of processes are reviewed here that hold promise as components of treatment schemes for PFAS-laden membrane system concentrates. Attention is also given to relevant concentration processes because it is beneficial to reduce concentrate volume prior to PFAS destruction or sequestration. Given the costs and challenges of managing PFAS in membrane concentrates, it is critical to evaluate both established and emerging technologies in selecting processes for immediate use and continued research.

3.
Membranes (Basel) ; 11(1)2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33401463

RESUMO

Forward osmosis (FO) and pressure retarded osmosis (PRO) are the two operational modes for osmotically driven membrane processes (ODMPs). ODMPs have gained increasing popularity in the laboratory over the years; however, OMDPs have not been applied in very many cases at full scale because they are still emerging technologies that require further development. Computational fluid dynamics (CFD) modeling coupled with solute transport evaluation provides a tool to study hydrodynamics and concentration polarization in FO and PRO. In this study a series of models were developed to predict water flux. The simulation results of empty-channel (with no feed spacer) membrane cells were verified by comparison with experimental results, showing that CFD simulation with solute transport is a reliable tool. Ensuing 2D and 3D models were built to study the impact of feed spacers on the velocity and concentration distribution inside the flow channels, and investigate whether the presence of spacers would enable enhancement of water flux. The results showed that spacers could change the concentration and velocity profile and they could reduce or enhance water flux depending on the inlet flow velocity and distance between the membrane and spacer.

4.
Membranes (Basel) ; 10(12)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371519

RESUMO

Colloidal fouling can be mitigated by membrane surface patterning. This contribution identifies the effect of different pattern geometries on fouling behavior. Nanoscale line-and-groove patterns with different feature sizes were applied by thermal embossing on commercial nanofiltration membranes. Threshold flux values of as-received, pressed, and patterned membranes were determined using constant flux, cross-flow filtration experiments. A previously derived combined intermediate pore blocking and cake filtration model was applied to the experimental data to determine threshold flux values. The threshold fluxes of all patterned membranes were higher than the as-received and pressed membranes. The pattern fraction ratio (PFR), defined as the quotient of line width and groove width, was used to analyze the relationship between threshold flux and pattern geometry quantitatively. Experimental work combined with computational fluid dynamics simulations showed that increasing the PFR leads to higher threshold flux. As the PFR increases, the percentage of vortex-forming area within the pattern grooves increases, and vortex-induced shielding increases. This study suggests that the PFR should be higher than 1 to produce patterned membranes with maximal threshold flux values. Knowledge generated in this study can be applied to other feature types to design patterned membranes for improved control over colloidal fouling.

5.
Chemosphere ; 253: 126628, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32464771

RESUMO

Superfine powdered activated carbon (S-PAC) is an adsorbent material with the promise of properties that allow for rapid adsorption of small molecule contaminants. To explore the potential for rapid adsorption among varying activated carbon types, seven commercially available activated carbons were obtained and pulverized to produce S-PAC particles less than 1 µm in diameter. The carbons were chosen to include several types of common carbons produced from coal precursors as well as a wood-based carbon and a coconut shell-based carbon. In this study, the S-PACs and their parent PACs were tested for the adsorption of three aromatic compounds-2-phenylphenol, biphenyl, and phenanthrene-with and without the presence of natural organic matter (NOM). Adsorption rates were increased for adsorption onto S-PAC as compared to PAC in all trials without NOM and in most trials with NOM. Faster adsorption onto S-PAC was found to be a result of a smaller particle size, lower surface oxygen content, larger pore diameters, and neutral pHPZC. Adsorption of a planar compound, phenanthrene, increased the most between PAC and S-PAC, while adsorption of 2-phenylphenol, a nonplanar compound, was impacted the least. Phenanthrene additionally was minimally impacted by the presence of NOM while 2-phenylphenol adsorption declined severely in the presence of NOM.


Assuntos
Adsorção , Carvão Vegetal/química , Compostos Orgânicos/química , Hidrocarbonetos Aromáticos/química , Concentração de Íons de Hidrogênio , Cinética , Conformação Molecular , Tamanho da Partícula
6.
Membranes (Basel) ; 8(4)2018 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-30453698

RESUMO

This paper discusses the role played by the mechanical stiffness of porous nanocomposite supports on thin-film composite (TFC) membrane water permeance. Helically coiled and multiwall carbon nanotubes (CNTs) were studied as additives in the nanocomposite supports. Mechanical stiffness was evaluated using tensile tests and penetration tests. While a low loading of CNTs caused macrovoids that decreased the structural integrity, adding higher loads of CNTs compensated for this effect, and this resulted in a net increase in structural stiffness. It was found that the Young's modulus of the nanocomposite supports increased by 30% upon addition of CNTs at 2 wt %. Results were similar for both types of CNTs. An empirical model for porous composite materials described the Young's modulus results. The nanocomposite supports were subsequently used to create TFC membranes. TFC membranes with stiffer supports were more effective at preventing declines in water permeance during compression. These findings support the idea that increasing the mechanical stiffness of TFC membrane nanocomposite supports is an effective strategy for enhancing water production in desalination operations.

7.
J Hazard Mater ; 339: 385-394, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28668756

RESUMO

This study was conducted to determine the susceptibility of plastic (i.e., PEX, HDPE and CPVC) and copper pipes to short-term contamination by crude oil. Pipes were exposed to highly and slightly contaminated drinking water for the typical duration of Do Not Use drinking water orders. PEX pipes sorbed and desorbed the greatest amount of monoaromatic hydrocarbons (MAHs), whereas copper pipes were less susceptible to contamination. For benzene, toluene, ethylbenzene, and xylenes (BTEX) quantified in water, only benzene exceeded its health based maximum contaminant level (MCL). The MCL was exceeded for copper pipe on day 3, for CPVC pipe through day 9, and PEX and HDPE pipes through day 15. The BTEX compound concentration in water after the pipes were returned to service depended on the initial crude oil concentration, material type, and exposure duration. Total organic carbon (TOC) measurement was not helpful in detecting oil contaminated water. Except BTEX, trimethylbenzene isomers and a couple of polycyclic aromatic hydrocarbons (PAHs) with and without MCLs were also detected desorbing from PEX-A pipe. Oil contaminated water must be thoroughly characterized and pipe type will influence the ability of drinking water levels to return to safe limits.

8.
J Appl Toxicol ; 37(12): 1464-1470, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28653411

RESUMO

In response to the 2010 Deepwater Horizon oil spill, over 1 million gallons of dispersant were applied in Gulf of Mexico offshore waters; Corexit 9500 was the most applied dispersant. The impact on organisms in nearshore and freshwaters has received little scrutiny. Acute 48 h toxicity of Corexit 9500 and a new hyperbranched polyethylenimine (HPEI) dispersant-like compound were evaluated for the freshwater indicator organism, Daphnia magna and for larval and early spat stages of the Eastern oyster, Crassostrea virginica. For D. magna, Corexit 9500 demonstrated toxicity (EC50 of 0.14 [0.13, 0.15] ppm) similar to the 10-kDa HPEI (EC50 of 0.16 [0.12, 0.19] ppm). HPEI toxicity increased as a function of molecular weight (1.2 to 750 kDa). The 10 kDa size HPEI was further investigated because it dispersed crude oil with equal effectiveness as Corexit. For Corexit, 100% oyster mortality was detected for the ≤0.2-mm size classes and mortality >50% for the 0.3- and 0.7-mm size classes at the two greatest concentrations (25 and 50 ppm). HPEI (10 kDa) exhibited low mortality rates (<30%) for all concentrations for all oyster size classes except the 0.1-mm class. Although mortality rates for this size class were up to 60%, mortality was still less than the mortality caused by Corexit 9500. The low toxicity of HPEI polymers for C. virginica in comparison with Corexit 9500 suggests that HPEI polymers warrant further study.


Assuntos
Crassostrea/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Poluição por Petróleo/análise , Petróleo/toxicidade , Tensoativos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Crassostrea/crescimento & desenvolvimento , Daphnia/crescimento & desenvolvimento , Larva , Lipídeos/toxicidade , Polietilenoimina/toxicidade
10.
Environ Sci Technol ; 50(21): 11912-11921, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27740769

RESUMO

Germicidal UVC radiation is a highly effective, chemical-free tool for bacteria inactivation, but its application is limited to reactors and open areas that can accommodate lamps/LEDs and wiring. A relevant example of problematic bacterial colonization within UV-inaccessible confines where chemical techniques have found only limited success is biofouling of feed channels in high-pressure membrane elements for water treatment. Herein we demonstrate a unique method of generating UV internally using embedded radioluminescent (RL) particles excited by an external X-ray source. We further show that the magnitude of the emitted UV intensity and required X-ray dose rates are likely within effective and practical ranges for future application to antibiofouling technology. Assessment of three Pr3+-activated RL phosphor candidates revealed LaPO4:Pr3+ to have the most favorable luminescence properties, achieving over 2-log inactivation of E. coli in a thin water film with a 74 Gy dose of 150 kVp X-rays. The effect of UVC RL resulted in a doubling of inactivation rates over X-ray irradiation alone. Further efforts targeting membrane applications, which included X-ray penetration modeling, RO membrane UVC tolerance, and economic analysis, suggested that UVC RL shows promise for application to bacteria control in seawater RO.


Assuntos
Técnicas Bacteriológicas/métodos , Incrustação Biológica , Escherichia coli , Escherichia coli/efeitos da radiação , Raios Ultravioleta , Raios X
11.
Water Res ; 105: 274-281, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27623413

RESUMO

Nanofiltration (NF) is a promising technology for removing precursors of disinfection byproducts (DBPs) from source waters prior to oxidant addition in water treatment. The aims of this study were to investigate (i) the removal efficiencies of N-nitrosodimethylamine (NDMA), halonitromethane (HNM), and trihalomethane (THM) precursors by NF membranes from different source water types (i.e. surface water, wastewater impacted surface water, and municipal and industrial wastewater treatment effluents), (ii) the impact of membrane type, and (iii) the effects of background water components (i.e., pH, ionic strength, and Ca2+) on the removal of selected DBP precursors from different source waters. The results showed the overall precursor removal efficiencies were 57-83%, 48-87%, and 72-97% for NDMA, HNM, and THM precursors, respectively. The removal of NDMA precursors decreased with the increases in average molecular weight cut off and negative surface charge of NF membranes tested, while the removal of THM precursors was slightly affected. pH changes increased the removal of NDMA precursors, but pH did not affect the removal of THM and HNM precursors in municipal WWTP effluent. On the other hand, pH changes had little or no effect on DBP removal from industrial WWTP effluent. In addition, regardless of the membrane type or background water type/characteristics, ionic strength did not show any impact on DBP precursor removals. Lastly, an increase in Ca2+ concentration enhanced the removal of NDMA precursors while a slight decrease and no effect was observed for THM and HNM precursors, respectively, in municipal WWTP effluent.


Assuntos
Dimetilnitrosamina/química , Trialometanos/química , Águas Residuárias , Poluentes Químicos da Água/química , Purificação da Água
12.
Water Res ; 100: 429-438, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27232987

RESUMO

In microfiltration processes for drinking water treatment, one method of removing trace contaminants is to add powdered activated carbon (PAC). Recently, a version of PAC called superfine PAC (S-PAC) has been under development. S-PAC has a smaller particle size and thus faster adsorption kinetics than conventionally sized PAC. Membrane coating performance of various S-PAC samples was evaluated by measuring adsorption of atrazine, a model micropollutant. S-PACs were created in-house from PACs of three different materials: coal, wood, and coconut shell. Milling time was varied to produce S-PACs pulverized with different amounts of energy. These had different particles sizes, but other properties (e.g. oxygen content), also differed. In pure water the coal based S-PACs showed superior atrazine adsorption; all milled carbons had over 90% removal while the PAC had only 45% removal. With addition of calcium and/or NOM, removal rates decreased, but milled carbons still removed more atrazine than PAC. Oxygen content and specific external surface area (both of which increased with longer milling times) were the most significant predictors of atrazine removal. S-PAC coatings resulted in loss of filtration flux compared to an uncoated membrane and smaller particles caused more flux decline than larger particles; however, the data suggest that NOM fouling is still more of a concern than S-PAC fouling. The addition of calcium improved the flux, especially for the longer-milled carbons. Overall the data show that when milling S-PAC with different levels of energy there is a tradeoff: smaller particles adsorb contaminants better, but cause greater flux decline. Fortunately, an acceptable balance may be possible; for example, in these experiments the coal-based S-PAC after 30 min of milling achieved a fairly high atrazine removal (overall 80%) with a fairly low flux reduction (under 30%) even in the presence of NOM. This suggests that relatively short duration (low energy) milling is viable for creating useful S-PAC materials applied in tandem with microfiltration.


Assuntos
Atrazina , Carvão Vegetal , Adsorção , Carbono , Membranas Artificiais , Purificação da Água
13.
Water Res ; 89: 161-70, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26657354

RESUMO

Superfine powdered activated carbon (S-PAC) is an adsorbent material with particle size between roughly 0.1-1 µm. This is about an order of magnitude smaller than conventional powdered activated carbon (PAC), typically 10-50 µm. S-PAC has been shown to outperform PAC for adsorption of various drinking water contaminants. However, variation in S-PAC production methods and limited material characterization in prior studies lead to questions of how S-PAC characteristics deviate from that of its parent PAC. In this study, a wet mill filled with 0.3-0.5 mm yttrium-stabilized zirconium oxide grinding beads was used to produce S-PAC from seven commercially available activated carbons of various source materials, including two coal types, coconut shell, and wood. Particle sizes were varied by changing the milling time, keeping mill power, batch volume, and recirculation rate constant. As expected, mean particle size decreased with longer milling. A lignite coal-based carbon had the smallest mean particle diameter at 169 nm, while the wood-based carbon had the largest at 440 nm. The wood and coconut-shell based carbons had the highest resistance to milling. Specific surface area and pore volume distributions were generally unchanged with increased milling time. Changes in the point of zero charge (pH(PZC)) and oxygen content of the milled carbons were found to correlate with an increasing specific external surface area. However, the isoelectric point (pH(IEP)), which measures only external surfaces, was unchanged with milling and also much lower in value than pH(PZC). It is likely that the outer surface is easily oxidized while internal surfaces remain largely unchanged, which results in a lower average pH as measured by pH(PZC).


Assuntos
Adsorção , Carvão Vegetal/química , Tamanho da Partícula , Concentração de Íons de Hidrogênio , Oxigênio/análise , Pós/química , Propriedades de Superfície
14.
Environ Sci Technol ; 48(21): 12868-75, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25279688

RESUMO

PAMAM dendrimers have recently been investigated as efficient and biocompatible oil dispersants utilizing their encapsulation capacity; however, their high cationic charge density has been shown to be cytotoxic. It is therefore imperative to mitigate cationic charge-induced toxicity and understand the effects of such changes. Presented here is a synergistic experimental and computational approach to examine the effects of varying terminal surface charge on the capacity of dendrimers to disperse model liner, polycyclic aromatic, and hybrid hydrocarbons. Uncharged dendrimers collapse by forming intramolecular hydrogen bonds, which reduce the hosting capability. On the other hand, changing the surface charges from positive to negative greatly shifts the pKa of tertiary amines of the PAMAM dendrimer interior. As a result, the negatively charged dendrimers have a significant percentage of tertiary amines protonated, ∼30%. This unexpected change in the interior protonation state causes electrostatic interactions with the anionic terminal groups, leading to contraction and a marked decrease in hydrocarbon hosting capacity. The present work highlights the robust nature of dendrimer oil dispersion and also illuminates potentially unintended or unanticipated effects of varying dendrimer surface chemistry on their encapsulation or hosting efficacy, which is important for their environmental, industrial, and biomedical applications.


Assuntos
Dendrímeros/química , Óleos/química , Tensoativos/química , Hidrocarbonetos/análise , Hidrodinâmica , Cinética , Fenantrenos/química , Espectrometria de Fluorescência , Eletricidade Estática , Relação Estrutura-Atividade , Temperatura
15.
Environ Sci Process Impacts ; 16(6): 1387-99, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24834441

RESUMO

Algaculture has the potential to be a sustainable option for nutrient removal at wastewater treatment plants. The purpose of this study was to compare the environmental impacts of three likely algaculture integration strategies to a conventional nutrient removal strategy. Process modeling was used to determine life cycle inventory data and a comparative life cycle assessment was used to determine environmental impacts. Treatment scenarios included a base case treatment plant without nutrient removal, a plant with conventional nutrient removal, and three other cases with algal unit processes placed at the head of the plant, in a side stream, and at the end of the plant, respectively. Impact categories included eutrophication, global warming, ecotoxicity, and primary energy demand. Integrating algaculture prior to activated sludge proved to be most beneficial of the scenarios considered for all impact categories; however, this scenario would also require primary sedimentation and impacts of that unit process should be considered for implementation of such a system.


Assuntos
Microalgas/crescimento & desenvolvimento , Eliminação de Resíduos Líquidos/métodos , Eutrofização , Águas Residuárias/química , Poluentes da Água/análise
16.
J Hazard Mater ; 261: 91-8, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23911830

RESUMO

Multi-walled carbon nanotubes (MWCNTs), nano-graphene platelets (NGPs), and superfine powdered activated carbon (S-PAC) were comparatively evaluated for their applicability as adsorptive coatings on microfiltration membranes. The objective was to determine which materials were capable of contaminant removal while causing minimal flux reduction. Methylene blue and atrazine were the model contaminants. When applied as membrane coatings, MWCNTs had minimal retention capabilities for the model contaminants, and S-PAC had the fastest removal. The membrane coating approach was also compared with a stirred vessel configuration, in which the adsorbent was added to a stirred flask preceding the membrane cell. Direct application of the adsorbent to the membrane constituted a greater initial reduction in permeate concentrations of the model contaminants than with the stirred flask setup. All adsorbents except S-PAC showed flux reductions less than 5% after application as thin-layer membrane coatings, and flux recovery after membrane backwashing was greater than 90% for all materials and masses tested.


Assuntos
Carbono/química , Membranas Artificiais , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Atrazina/química , Azul de Metileno/química , Tamanho da Partícula , Pós , Ultrafiltração , Purificação da Água/instrumentação
17.
Environ Sci Technol ; 46(13): 7046-53, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22320890

RESUMO

Engineered nanomaterials (ENMs) are an emerging class of contaminants entering wastewater treatment plants (WWTPs), and standardized testing protocols are needed by industry and regulators to assess the potential removal of ENMs during wastewater treatment. A United States Environmental Protection Agency (USEPA) standard method (OPPTS 835.1110) for estimating soluble pollutant removal during wastewater treatment using freeze-dried, heat-treated (FDH) activated sludge (AS) has been recently proposed for predicting ENM fate in WWTPs. This study is the first to evaluate the use of FDH AS in batch experiments for quantifying ENM removal from wastewater. While soluble pollutants sorbed equally to fresh and FDH AS, fullerene, silver, gold, and polystyrene nanoparticles' removals with FDH AS were approximately 60-100% less than their removals with fresh AS. Unlike fresh AS, FDH AS had a high concentration of proteins and other soluble organics in the liquid phase, an indication of bacterial membrane disintegration due to freeze-drying and heat exposure. This cellular matter stabilized ENMs such that they were poorly removed by FDH AS. Therefore, FDH AS is not a suitable sorbent for estimating nanoparticle removal in WWTPs, whereas fresh AS has been shown to reasonably predict full-scale performance for titanium removal. This study indicates that natural or engineered processes (e.g., anaerobic digestion, biosolids decomposition in soils) that result in cellular degradation and matrices rich in surfactant-like materials (natural organic matter, proteins, phospholipids, etc.) may transform nanoparticle surfaces and significantly alter their fate in the environment.


Assuntos
Biodegradação Ambiental , Nanoestruturas/química , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/isolamento & purificação , Poluentes Químicos da Água/metabolismo , Adsorção , Liofilização , Tensoativos/química , Purificação da Água/métodos
18.
Environ Toxicol Chem ; 31(1): 93-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21994124

RESUMO

Increasing manufacture and use of engineered nanoparticles is leading to a greater probability for release of engineered nanoparticles into the environment and exposure to organisms. In particular, zinc oxide (ZnO) is toxic, although it is unclear whether this toxicity is due to the zinc oxide nanoparticles, dissolution to Zn(2+) , or some combination thereof. The goal of this study was to determine the relative solubilities of both commercially available and in-house synthesized ZnO in matrices used for environmental fate and transport or biological toxicity studies. Dissolution of ZnO was observed in nanopure water (7.18-7.40 mg/L dissolved Zn, as measured by filtration) and Roswell Park Memorial Institute medium (RPMI-1640) (∼5 mg/L), but much more dissolution was observed in Dulbecco's modified Eagle's medium, in which the dissolved Zn concentration exceeded 34 mg/L. Moderately hard water exhibited low Zn solubility, likely because of precipitation of a Zn carbonate solid phase. Precipitation of a Zn-containing solid phase in RPMI also appeared to limit Zn solubility. Equilibrium conditions with respect to ZnO solubility were not apparent in these matrices, even after more than 1,000 h of dissolution. These results suggest that solution chemistry exerts a strong influence on ZnO dissolution and can result in limits on Zn solubility from precipitation of less soluble solid phases.


Assuntos
Nanopartículas/química , Poluentes Químicos da Água/química , Óxido de Zinco/química , Meio Ambiente , Tamanho da Partícula , Solubilidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...