Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477893

RESUMO

Food intake and activity adapt during pregnancy to meet the increased energy demands. In comparison to non-pregnant females, pregnant mice consume more food, eating larger meals during the light phase, and reduce physical activity. How pregnancy changes the circadian timing of behaviour was less clear. We therefore randomised female C57BL/6J mice to mating for study until early (n = 10), mid- (n = 10) or late pregnancy (n = 11) or as age-matched, non-pregnant controls (n = 12). Mice were housed individually in Promethion cages with a 12 h light-12 h dark cycle [lights on at 07.00 h, Zeitgeber (ZT)0] for behavioural analysis. Food intake between ZT10 and ZT11 was greater in pregnant than non-pregnant mice on days 6.5-12.5 and 12.5-17.5. In mice that exhibited a peak in the last 4 h of the light phase (ZT8-ZT12), peaks were delayed by 1.6 h in the pregnant compared with the non-pregnant group. Food intake immediately after dark-phase onset (ZT13-ZT14) was greater in the pregnant than non-pregnant group during days 12.5-17.5. Water intake patterns corresponded to food intake. From days 0.5-6.5 onwards, the pregnant group moved less during the dark phase, with decreased probability of being awake, in comparison to the non-pregnant group. The onset of dark-phase activity, peaks in activity, and wakefulness were all delayed during pregnancy. In conclusion, increased food intake during pregnancy reflects increased amplitude of eating behaviour, without longer duration. Decreases in activity also contribute to positive energy balance in pregnancy, with delays to all measured behaviours evident from mid-pregnancy onwards. KEY POINTS: Circadian rhythms synchronise daily behaviours including eating, drinking and sleep, but how these change in pregnancy is unclear. Food intake increased, with delays in peaks of food intake behaviour late in the light phase from days 6.5 to 12.5 of pregnancy, in comparison to the non-pregnant group. The onset of activity after lights off (dark phase) was delayed in pregnant compared with non-pregnant mice. Activity decreased by ∼70% in the pregnant group, particularly in the dark (active) phase, with delays in peaks of wakefulness evident from days 0.5-6.5 of pregnancy onwards. These behavioural changes contribute to positive energy balance during pregnancy. Delays in circadian behaviours during mouse pregnancy were time period and pregnancy stage specific, implying different regulatory mechanisms.

2.
J Neuroendocrinol ; 36(5): e13386, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38549242

RESUMO

Extensive research is undertaken in rodents to determine the mechanism underlying obesity-induced leptin resistance. While body weight is generally tightly controlled in these studies, the effect of age of experimental animals has received less attention. Specifically, there has been little investigation into leptin regulation of food intake in middle-aged animals, which is a period of particular relevance for weight gain in humans. We investigated whether the satiety effects of leptin remained constant in young (3 months), middle-aged (12 months) or aged (18-22 months) male mice. Although mean body weight increased with age, leptin concentrations did not significantly increase in male mice beyond 12 months of age. Exogenous leptin administration led to a significant reduction in food intake in young mice but had no effect on food intake in middle-aged male mice. This loss of the satiety effect of leptin appeared to be transient, with leptin administration leading to the greatest inhibition of food intake in the aged male mice. Subsequently, we investigated whether these differences were due to changes in leptin transport into the brain with ageing. No change in leptin clearance from the blood or transport into the brain was observed, suggesting the emergence of central resistance to leptin in middle age. These studies demonstrate the presence of dynamic and age-specific changes in the satiety effects of leptin in male mice and highlight the requirement for age to be carefully considered when undertaking metabolic studies in rodents.


Assuntos
Envelhecimento , Ingestão de Alimentos , Leptina , Camundongos Endogâmicos C57BL , Resposta de Saciedade , Animais , Leptina/farmacologia , Masculino , Camundongos , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Envelhecimento/fisiologia , Envelhecimento/metabolismo , Resposta de Saciedade/efeitos dos fármacos , Resposta de Saciedade/fisiologia , Peso Corporal/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos
3.
Peptides ; 172: 171114, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37926186

RESUMO

Small intestinal satiation pathways involve nutrient-induced stimulation of chemoreceptors leading to release of satiety hormones from intestinal enteroendocrine cells (ECCs). Whether adaptations in these pathways contribute to increased maternal food intake during pregnancy is unknown. To determine the expression of intestinal nutrient-sensors and satiety hormone transcripts and proteins across pregnancy in mice. Female C57BL/6J mice (10-12 weeks old) were randomized to mating and then tissue collection at early- (6.5 d), mid- (12.5 d) or late-pregnancy (17.5 d), or to an unmated age matched control group. Relative transcript expression of intestinal fatty acid, peptide and amino acid and carbohydrate chemoreceptors, as well as gut hormones was determined across pregnancy. The density of G-protein coupled receptor 93 (GPR93), free fatty acid receptor (FFAR) 4, cholecystokinin (CCK) and glucagon-like peptide1 (GLP-1) immunopositive cells was then compared between non-pregnant and late-pregnant mice. Duodenal GPR93 expression was lower in late pregnant than non-pregnant mice (P < 0.05). Ileal FFAR1 expression was higher at mid- than at early- or late-pregnancy. Ileal FFAR2 expression was higher at mid-pregnancy than in early pregnancy. Although FFAR4 expression was consistently lower in late-pregnant than non-pregnant mice (P < 0.001), the density of FFAR4 immunopositive cells was higher in the jejunum of late-pregnant than non-pregnant mice. A subset of protein and fatty acid chemoreceptor transcripts undergo region-specific change during murine pregnancy, which could augment hormone release and contribute to increased food intake. Further investigations are needed to determine the functional relevance of these changes.


Assuntos
Hormônios Gastrointestinais , Saciação , Animais , Feminino , Camundongos , Gravidez , Colecistocinina/metabolismo , Ácidos Graxos , Hormônios Gastrointestinais/metabolismo , Camundongos Endogâmicos C57BL , Nutrientes , Saciação/fisiologia
4.
J Neuroendocrinol ; 35(12): e13350, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37926066

RESUMO

Obesity during pregnancy represents a significant health issue and can lead to increased complications during pregnancy and impairments with breastfeeding, along with long-term negative health consequences for both mother and offspring. In rodent models, diet-induced obesity (DIO) during pregnancy leads to poor outcomes for offspring. Using a DIO mouse model, consisting of feeding mice a high fat diet for 8 weeks before mating, we recapitulate the effect of high pup mortality within the first 3 days postpartum. To examine the activity of the dam around the time of birth, late pregnant control and DIO dams were recorded in their home cages and the behaviour of the dam immediately before and after birth was analysed. Prior to giving birth, DIO dams spent less time engaging in nesting behaviour, while after birth, DIO dams spent less time in the nest with their pups compared to control dams, indicating reduced pup-engagement in the early postpartum period. We have previously reported that lactogenic hormone action, mediated by the prolactin receptor, in the medial preoptic area of the hypothalamus (MPOA) is critical for the onset of normal postpartum maternal behaviour. We hypothesized that DIO dams may have lower lactogenic hormone activity during late pregnancy, which would contribute to impaired onset of normal postpartum maternal behaviour. Day 16 lactogenic activity, transport of prolactin into the brain, and plasma prolactin concentrations around birth were all similar in control and DIO dams. Moreover, endogenous pSTAT5, a marker of prolactin receptor activity, in the MPOA was unaffected by DIO. Overall, these data indicate that lactogenic activity in late pregnancy of DIO dams is not different to controls and is unlikely to play a major role in impaired onset of normal postpartum maternal behaviour.


Assuntos
Dieta Hiperlipídica , Obesidade Materna , Humanos , Gravidez , Camundongos , Feminino , Animais , Dieta Hiperlipídica/efeitos adversos , Prolactina , Receptores da Prolactina , Período Periparto , Obesidade/etiologia , Comportamento Materno
5.
iScience ; 26(4): 106455, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37020965

RESUMO

Olfactory stimuli from food influence energy balance, preparing the body for digestion when food is consumed. Social chemosensory cues predict subsequent energetic changes required for social interactions and could be an additional sensory input influencing energy balance. We show that exposure to female chemostimuli increases metabolic rate in male mice and reduces body weight and adipose tissue expansion when mice are fed a high-fat diet. These responses are linked to detection of female chemostimuli via G-protein Gαo-expressing vomeronasal sensory neurons. Males with Gαo deleted in the olfactory system are fertile but do not show changes in body weight when paired with females and show severely blunted changes in energy expenditure when exposed to female bedding. These results establish that metabolic and reproductive responses to females can be partly uncoupled in male mice and that detection of female chemostimuli is a central regulator of energy metabolism and lipid storage.

6.
Endocrinology ; 164(5)2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36960565

RESUMO

Lactation in mammals is associated with a period of infertility, which serves to direct maternal metabolic resources toward caring for the newborn offspring rather than supporting another pregnancy. This lactational infertility is characterized by reduced pulsatile luteinizing hormone (LH) secretion and lack of ovulation. The mechanisms mediating suppression of LH secretion during lactation are unclear. There are potential roles for both hormonal cues such as prolactin and progesterone, and pup-derived cues such as suckling, on the inhibition of reproduction. To enable future studies using transgenic animals to investigate these mechanisms, in the present study our aim was to characterize lactational infertility in mice, and to investigate the effect of removing pup-derived cues on LH secretion, time to ovulation, and kisspeptin immunoreactivity. We first confirmed that C57BL/6J mice experience prolonged anestrus during lactation, which is dependent on establishment of lactation, as removal of pups the day of parturition led to immediate resumption of pulsatile LH secretion and normal estrous cycles. Once lactation is established, however, the lactational anestrus persisted for several days even after premature removal of pups. Pharmacological suppression of prolactin following premature weaning significantly reduced this period of lactational infertility. Progesterone does not appear to play a significant role in the suppression of fertility during lactation in mice, as levels measured during lactation were not different from nonpregnant mice. These data suggest that prolactin plays a key role in mediating anestrus during early lactation in mice, even in the absence of the suckling stimulus.


Assuntos
Infertilidade , Hormônio Luteinizante , Gravidez , Feminino , Camundongos , Animais , Hormônio Luteinizante/metabolismo , Prolactina , Progesterona , Camundongos Endogâmicos C57BL , Lactação/fisiologia , Mamíferos/metabolismo
7.
J Neuroendocrinol ; 35(7): e13232, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36691950

RESUMO

Maternal interactions with offspring are highly rewarding, which reinforces expression of essential caregiving behaviours that promote offspring survival. In rats, the rewarding effect of pups depends on reproductive state, with lactating females specifically developing strong preferences for pup-associated contexts. Whether this also occurs in mice is unknown, hence we aimed to characterise pup-related preference across reproductive states in female mice. In a conditioned place preference (CPP) test, pups were a rewarding stimulus to female mice prior to lactation, with virgin and pregnant females developing a preference for a pup-associated context. We have previously shown that lactogenic hormones, acting through the prolactin receptor (Prlr), play an important role in maternal motivation. Here, we aimed to investigate whether Prlr action is important for pup-related reward behaviour in mice. We showed that prolactin itself had a reinforcing effect in a CPP test, and that exposure to pups increased blood prolactin levels in virgin female mice. Prlr expression in CamKIIα-expressing neurons and GABAergic neurons has previously been shown to be important for different aspects of parental behaviour. However, we found that conditional Prlr deletion from either of these neuronal populations did not disrupt the development of a preference for pup-associated contexts in pregnant female mice, indicating that lactogenic action on these populations is not necessary for the rewarding effect of pups. Together, these data show that while lactogenic hormones likely contribute to a rewarding effect of pups, their action on two key neuronal populations is not necessary for this effect in female mice.


Assuntos
Lactação , Prolactina , Gravidez , Humanos , Animais , Camundongos , Ratos , Feminino , Lactação/fisiologia , Comportamento Materno/fisiologia , Receptores da Prolactina , Recompensa , Neurônios GABAérgicos
8.
Front Endocrinol (Lausanne) ; 12: 765976, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867810

RESUMO

Adaptive changes in glucose homeostasis during pregnancy require proliferation of insulin-secreting beta-cells in the pancreas, together with increased sensitivity for glucose-stimulated insulin secretion. Increased concentrations of maternal prolactin/placental lactogen contribute to these changes, but the site of action remains uncertain. Use of Cre-lox technology has generated pancreas-specific prolactin receptor (Prlr) knockouts that demonstrate the development of a gestational diabetic like state. However, many Cre-lines for the pancreas also express Cre in the hypothalamus and prolactin could act centrally to modulate glucose homeostasis. The aim of the current study was to examine the relative contribution of prolactin action in the pancreas and brain to these pregnancy-induced adaptations in glucose regulation. Deletion of prolactin receptor (Prlr) from the pancreas using Pdx-cre or Rip-cre led to impaired glucose tolerance and increased non-fasting blood glucose levels during pregnancy. Prlrlox/lox /Pdx-Cre mice also had impaired glucose-stimulated insulin secretion and attenuated pregnancy-induced increase in beta-cell fraction. Varying degrees of Prlr recombination in the hypothalamus with these Cre lines left open the possibility that central actions of prolactin could contribute to the pregnancy-induced changes in glucose homeostasis. Targeted deletion of Prlr specifically from the forebrain, including areas of expression induced by Pdx-Cre and Rip-cre, had no effect on pregnancy-induced adaptations in glucose homeostasis. These data emphasize the pancreas as the direct target of prolactin/placental lactogen action in driving adaptive changes in glucose homeostasis during pregnancy.


Assuntos
Adaptação Fisiológica/fisiologia , Glucose/metabolismo , Homeostase/fisiologia , Pâncreas/metabolismo , Prolactina/metabolismo , Prosencéfalo/metabolismo , Animais , Feminino , Intolerância à Glucose/metabolismo , Hipotálamo/metabolismo , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Placenta/metabolismo , Gravidez , Receptores da Prolactina/metabolismo , Transdução de Sinais/fisiologia
9.
Obesity (Silver Spring) ; 29(11): 1813-1824, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34623766

RESUMO

A sufficient and balanced maternal diet is critical to meet the nutritional demands of the developing fetus and to facilitate deposition of fat reserves for lactation. Multiple adaptations occur to meet these energy requirements, including reductions in energy expenditure and increases in maternal food intake. The central nervous system plays a vital role in the regulation of food intake and energy homeostasis and responds to multiple metabolic and nutrient cues, including those arising from the gastrointestinal tract. This review describes the nutrient requirements of pregnancy and the impact of over- and undernutrition on the risk of pregnancy complications and adult disease in progeny. The central and peripheral regulation of food intake is then discussed, with particular emphasis on the adaptations that occur during pregnancy and the mechanisms that drive these changes, including the possible role of the pregnancy-associated hormones progesterone, estrogen, prolactin, and growth hormone. We identify the need for deeper mechanistic understanding of maternal adaptations, in particular, changes in gut-brain axis satiety signaling. Improved understanding of food intake regulation during pregnancy will provide a basis to inform strategies that prevent maternal under- or overnutrition, improve fetal health, and reduce the long-term health and economic burden for mothers and offspring.


Assuntos
Eixo Encéfalo-Intestino , Lactação , Ingestão de Alimentos , Metabolismo Energético , Feminino , Humanos , Necessidades Nutricionais , Gravidez
10.
Elife ; 102021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34528511

RESUMO

As part of the maternal adaptations to pregnancy, mice show a rapid, profound reduction in voluntary running wheel activity (RWA) as soon as pregnancy is achieved. Here, we evaluate the hypothesis that prolactin, one of the first hormones to change secretion pattern following mating, is involved in driving this suppression of physical activity levels during pregnancy. We show that prolactin can acutely suppress RWA in non-pregnant female mice, and that conditional deletion of prolactin receptors (Prlr) from either most forebrain neurons or from GABA neurons prevented the early pregnancy-induced suppression of RWA. Deletion of Prlr specifically from the medial preoptic area, a brain region associated with multiple homeostatic and behavioral roles including parental behavior, completely abolished the early pregnancy-induced suppression of RWA. As pregnancy progresses, prolactin action continues to contribute to the further suppression of RWA, although it is not the only factor involved. Our data demonstrate a key role for prolactin in suppressing voluntary physical activity during early pregnancy, highlighting a novel biological basis for reduced physical activity in pregnancy.


Assuntos
Condicionamento Físico Animal , Prolactina/fisiologia , Animais , Feminino , Homeostase , Camundongos , Gravidez , Área Pré-Óptica/metabolismo , Prolactina/metabolismo , Prosencéfalo/metabolismo , Receptores da Prolactina/metabolismo
11.
Horm Behav ; 135: 105041, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34385119

RESUMO

The survival of newborn offspring in mammals is dependent on sustained maternal care. Mammalian mothers are highly motivated to interact with and care for offspring, however, it is unclear how hormonal signals act on neural circuitry to promote maternal motivation during the transition to motherhood. In this study we aimed to establish methods that enable us to evaluate change in maternal motivation across the reproductive life cycle in female mice. Using two behavioural testing paradigms; a novel T-maze retrieval test and a barrier climbing test, we found that pup retrieval behaviour was low in virgin and pregnant mice compared to lactating females, indicating that maternal motivation arises around the time of parturition. Furthermore, in reproductively experienced females, maternal motivation declined over time after weaning of pups. As we have previously shown that lactogenic action mediated through the prolactin receptor (Prlr) in the medial preoptic area (MPOA) is essential for the expression of maternal behaviour, we aimed to investigate the role of lactogenic hormones in promoting pup-related motivational behaviours. With GABAergic neurons expressing Prlr in multiple brain regions important for maternal behaviour, we conditionally deleted Prlr from GABA neurons. Compared to control females, lactating GABA neuron-specific Prlr knockout mice showed slower and incomplete pup retrieval behaviour in the T-maze test. Testing of anxiety behaviour on an elevated plus maze indicated that these mice did not have increased anxiety levels, suggesting that lactogenic action on GABA neurons is necessary for the full expression of motivational aspects of maternal behaviour during lactation.


Assuntos
Prolactina , Receptores da Prolactina , Animais , Feminino , Neurônios GABAérgicos , Humanos , Lactação , Comportamento Materno , Camundongos , Motivação , Gravidez
12.
J Neuroendocrinol ; 33(4): e12946, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33710714

RESUMO

Pregnancy and lactation are highly metabolically demanding states. Maternal glucose is a key fuel source for the growth and development of the fetus, as well as for the production of milk during lactation. Hence, the maternal body undergoes major adaptations in the systems regulating glucose homeostasis to cope with the increased demand for glucose. As part of these changes, insulin levels are elevated during pregnancy and lower in lactation. The increased insulin secretion during pregnancy plays a vital role in the periphery; however, the potential effects of increased insulin action in the brain have not been widely investigated. In this review, we consider the impact of pregnancy on brain access and brain levels of insulin. Moreover, we explore the hypothesis that pregnancy is associated with site-specific central insulin resistance that is adaptive, allowing for the increases in peripheral insulin secretion without the consequences of increased central and peripheral insulin functions, such as to stimulate glucose uptake into maternal tissues or to inhibit food intake. Conversely, the loss of central insulin actions may impair other functions, such as insulin control of the autonomic nervous system. The potential role of low insulin in facilitating adaptive responses to lactation, such as hyperphagia and suppression of reproductive function, are also discussed. We end the review with a list of key research questions requiring resolution.


Assuntos
Encéfalo/metabolismo , Insulina/metabolismo , Lactação/metabolismo , Animais , Feminino , Gravidez , Transdução de Sinais/fisiologia
13.
Reprod Fertil ; 2(4): 244-250, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-35118402

RESUMO

Prolactin and placental lactogens increase during pregnancy and are involved with many aspects of maternal metabolic adaptation to pregnancy, likely to impact on fetal growth. The aim of this study was to determine whether maternal plasma prolactin or placental lactogen concentrations at 20 weeks of gestation were associated with later birth of small-for-gestational-age babies (SGA). In a nested case-control study, prolactin and placental lactogen in plasma samples obtained at 20 weeks of gestation were compared between 40 women who gave birth to SGA babies and 40 women with uncomplicated pregnancies and size appropriate-for-gestation-age (AGA) babies. Samples were collected as part of the 'screening of pregnancy endpoints' (SCOPE) prospective cohort study. SGA was defined as birthweight <10th customized birthweight centile (adjusted for maternal weight, height, ethnicity, parity, infant sex, and gestation age) in mothers who remained normotensive. No significant differences were observed in concentrations of prolactin or placental lactogen from women who gave birth to SGA babies compared with women with uncomplicated pregnancies. However, a sex-specific association was observed in SGA pregnancies, whereby lower maternal prolactin concentration at 20 weeks of gestation was observed in SGA pregnancies that were carrying a male fetus (132.0 ± 46.7 ng/mL vs 103.5 ± 38.3 ng/mL, mean ± s.d., P = 0.036 Student's t-test) compared to control pregnancies carrying a male fetus. Despite the implications of these lactogenic hormones in maternal metabolism, single measurements of either prolactin or placental lactogen at 20 weeks of gestation are unlikely to be useful biomarkers for SGA pregnancies. LAY SUMMARY: Early identification during pregnancy of small for gestational age (SGA) babies would enable interventions to lower risk of complications around birth (perinatal), but current detection rates of these at risk babies is low. Pregnancy hormones, prolactin and placental lactogen, are involved in metabolic changes that are required for the mother to support optimal growth and development of her offspring during pregnancy. The levels of these hormones may provide a measurable indicator (biomarker) to help identify these at risk pregnancies. Levels of these hormones were measured in samples from week 20 of gestation from women who went on to have SGA babies and control pregnancies where babies were born at a size appropriate for gestation age. Despite the implications of prolactin and placental lactogen in maternal metabolism, no significant differences were detected suggesting that single measures of either prolactin or placental lactogen at 20 weeks gestation are unlikely to be useful biomarker to help detect SGA pregnancies.


Assuntos
Lactogênio Placentário , Prolactina , Biomarcadores , Peso ao Nascer , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Placenta , Gravidez , Estudos Prospectivos
14.
Am J Physiol Gastrointest Liver Physiol ; 320(2): G183-G192, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33206550

RESUMO

Gastric vagal afferents (GVAs) sense food-related mechanical stimuli and signal to the central nervous system, to integrate control of meal termination. Pregnancy is characterized by increased maternal food intake, which is essential for normal fetal growth and to maximize progeny survival and health. However, it is unknown whether GVA function is altered during pregnancy to promote food intake. This study aimed to determine the mechanosensitivity of GVAs and food intake during early, mid-, and late stages of pregnancy in mice. Pregnant mice consumed more food compared with nonpregnant mice, notably in the light phase during mid- and late pregnancy. The increased food intake was predominantly due to light-phase increases in meal size across all stages of pregnancy. The sensitivity of GVA tension receptors to gastric distension was significantly attenuated in mid- and late pregnancy, whereas the sensitivity of GVA mucosal receptors to mucosal stroking was unchanged during pregnancy. To determine whether pregnancy-associated hormonal changes drive these adaptations, the effects of estradiol, progesterone, prolactin, and growth hormone on GVA tension receptor mechanosensitivity were determined in nonpregnant female mice. The sensitivity of GVA tension receptors to gastric distension was augmented by estradiol, attenuated by growth hormone, and unaffected by progesterone or prolactin. Together, the data indicate that the sensitivity of GVA tension receptors to tension is reduced during pregnancy, which may attenuate the perception of gastric fullness and explain increased food intake. Further, these adaptations may be driven by increases in maternal circulating growth hormone levels during pregnancy.NEW & NOTEWORTHY This study provides first evidence that gastric vagal afferent signaling is attenuated during pregnancy and inversely associated with meal size. Growth hormone attenuated mechanosensitivity of gastric vagal afferents, adding support that increases in maternal growth hormone may mediate adaptations in gastric vagal afferent signaling during pregnancy. These findings have important implications for the peripheral control of food intake during pregnancy.


Assuntos
Vias Aferentes/fisiologia , Plasticidade Neuronal/fisiologia , Estômago/inervação , Nervo Vago/fisiologia , Animais , Feminino , Camundongos , Gravidez
15.
J Neuroendocrinol ; 32(11): e12901, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33000513

RESUMO

Pregnancy represents a period of remarkable adaptive physiology throughout the body, with many of these important adaptations mediated by changes in gene transcription in the brain. A marked activation of the transcription factor signal transducer and activator of transcription 5 (STAT5) has been described in the brain during pregnancy and likely drives some of these changes. We aimed to investigate the physiological mechanism causing this increase in phosphorylated STAT5 (pSTAT5) during pregnancy. In various tissues, STAT5 is known to be activated by a number of different cytokines, including erythropoietin, growth hormone and prolactin. Because the lactogenic hormones that act through the prolactin receptor (PRLR), prolactin and its closely-related placental analogue placental lactogen, are significantly increased during pregnancy, we hypothesised that this receptor was primarily responsible for the pregnancy-induced increase in pSTAT5 in the brain. By examining temporal changes in plasma prolactin levels and the pattern of pSTAT5 immunoreactivity in the hypothalamus during early pregnancy, we found that the level of pSTAT5 was sensitive to circulating levels of endogenous prolactin. Using a transgenic model to conditionally delete PRLRs from forebrain neurones (Prlrlox/lox /CamK-Cre), we assessed the relative contribution of the PRLR to the up-regulation of pSTAT5 in the brain of pregnant mice. In the absence of PRLRs on most forebrain neurones, a significant reduction in pSTAT5 was observed throughout the hypothalamus and amygdala in late pregnancy, confirming that PRLR is key in mediating this response. The exception to this was the hypothalamic paraventricular nucleus, where only 17% of pSTAT5 immunoreactivity during pregnancy was in PRLR-expressing cells. Taken together, these data indicate that, although there are region-specific mechanisms involved, lactogenic activity through the PRLR is the primary signal activating STAT5 in the brain during pregnancy.


Assuntos
Química Encefálica/fisiologia , Receptores da Prolactina/fisiologia , Fator de Transcrição STAT5/metabolismo , Tonsila do Cerebelo/metabolismo , Animais , Química Encefálica/genética , Citocinas/metabolismo , Feminino , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Fosforilação , Placenta/metabolismo , Lactogênio Placentário/metabolismo , Gravidez , Prolactina/metabolismo , Fator de Transcrição STAT5/genética , Transdução de Sinais/efeitos dos fármacos
16.
J Neuroendocrinol ; 32(11): e12908, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33034148

RESUMO

In addition to its critical role in lactation, the anterior pituitary hormone prolactin also influences a broad range of other physiological processes. In particular, widespread expression of prolactin receptor (Prlr) in the brain has highlighted pleiotropic roles for prolactin in regulating neuronal function, including maternal behaviour, reproduction and energy balance. Research into the central actions of prolactin has predominately focused on effects on gene transcription via the canonical JAK2/STAT5; however, it is evident that prolactin can exert rapid actions to stimulate activity in specific populations of neurones. We aimed to investigate how widespread these rapid actions of prolactin are in regions of the brain with large populations of prolactin-sensitive neurones, and whether physiological state alters these responses. Using transgenic mice where the Cre-dependent calcium indicator, GCaMP6f, was conditionally expressed in cells expressing the long form of the Prlr, we monitored changes in levels of intracellular calcium ([Ca2+ ]i ) in ex vivo brain slice preparations as a surrogate marker of cellular activity. Here, we surveyed hypothalamic regions implicated in the diverse physiological functions of prolactin such as the arcuate (ARC) and paraventricular nuclei of the hypothalamus (PVN), as well as the medial preoptic area (MPOA). We observed that, in the ARC of males and in both virgin and lactating females, prolactin can exert rapid actions to stimulate neuronal activity in the majority of Prlr-expressing neurones. In the PVN and MPOA, we found a smaller subset of cells that rapidly respond to prolactin. In these brain regions, the effects we detected ranged from rapid or sustained increases in [Ca2+ ]i to inhibitory effects, indicating a heterogeneous nature of these Prlr-expressing populations. These results enhance our understanding of mechanisms by which prolactin acts on hypothalamic neurones and provide insights into how prolactin might influence neuronal circuits in the mouse brain.


Assuntos
Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Neurônios/metabolismo , Prolactina/farmacologia , Receptores da Prolactina/efeitos dos fármacos , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Sinalização do Cálcio , Feminino , Humanos , Hipotálamo/citologia , Imuno-Histoquímica , Lactação , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Área Pré-Óptica/efeitos dos fármacos , Área Pré-Óptica/metabolismo , Receptores da Prolactina/genética
17.
Handb Clin Neurol ; 171: 25-55, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32736755

RESUMO

The hormonal fluctuations in pregnancy drive a wide range of adaptive changes in the maternal brain. These range from specific neurophysiological changes in the patterns of activity of individual neuronal populations, through to complete modification of circuit characteristics leading to fundamental changes in behavior. From a neurologic perspective, the key hormone changes are those of the sex steroids, estradiol and progesterone, secreted first from the ovary and then from the placenta, the adrenal glucocorticoid cortisol, as well as the anterior pituitary peptide hormone prolactin and its pregnancy-specific homolog placental lactogen. All of these hormones are markedly elevated during pregnancy and cross the blood-brain barrier to exert actions on neuronal populations through receptors expressed in specific regions. Many of the hormone-induced changes are in autonomic or homeostatic systems. For example, patterns of oxytocin and prolactin secretion are dramatically altered to support novel physiological functions. Appetite is increased and feedback responses to metabolic hormones such as leptin and insulin are suppressed to promote a positive energy balance. Fundamental physiological systems such as glucose homeostasis and thermoregulation are modified to optimize conditions for fetal development. In addition to these largely autonomic changes, there are also changes in mood, behavior, and higher processes such as cognition. This chapter summarizes the hormonal changes associated with pregnancy and reviews how these changes impact on brain function, drawing on examples from animal research, as well as available information about human pregnancy.


Assuntos
Placenta , Prolactina , Animais , Cognição , Feminino , Humanos , Insulina , Leptina , Gravidez
18.
J Neuroendocrinol ; 32(8): e12889, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32725828

RESUMO

Ageing is related to changes in a number of endocrine systems that impact on the central actions of hormones. The anterior pituitary hormone prolactin is present in the circulation in both males and females, with widespread expression of the prolactin receptor throughout the forebrain. We aimed to investigate prolactin transport into the brain, as well as circulating levels of prolactin and functional responses to prolactin, in aged male mice (23 months). Transport of 125 I-labelled prolactin (125 I-prolactin) from the peripheral circulation into the brain was suppressed in aged compared to young adult (4 months) male mice, with no significant transport into the brain occurring in aged males. We subsequently investigated changes in the negative-feedback regulation of prolactin secretion and prolactin-induced suppression of luteinising hormone (LH) pulsatile secretion in aged male mice. Feedback regulation of prolactin secretion appeared to be unaffected in aged males, with no change in levels of circulating prolactin, and normal prolactin-induced phosphorylated signal transducer and activator of transcription 5(pSTAT5) immunoreactivity in tuberoinfundibular dopaminergic (TIDA) neurones in the arcuate nucleus. There were, however, significant impairments in the ability of prolactin to suppress LH pulsatile secretion in aged males. In young adult males, acute prolactin administration significantly decreased LH pulses from 1.5 ± 0.19 pulses of LH in 4 hours to 0.5 ± 0.27 pulses. In contrast, prolactin did not suppress LH pulse frequency in aged males, with prolactin leading to an increase in mean LH concentration. These data demonstrate the emergence of impairments in prolactin transport into the brain and deficits in specific functional responses to prolactin with ageing.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Prolactina/metabolismo , Animais , Transporte Biológico , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Prolactina/fisiologia , Caracteres Sexuais
19.
Neuropharmacology ; 167: 107911, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32058177

RESUMO

Mammalian pregnancy and lactation is accompanied by a period of infertility that takes place in the midst of a sustained increase in food intake. Indeed, successful reproduction in females is dependent on co-ordination of the distinct systems that regulate reproduction and metabolism. Rather than arising from different mechanisms during pregnancy and lactation, we propose that elevations in lactogenic hormones (predominant among these being prolactin and the placental lactogens), are ideally placed to influence both of these systems at the appropriate time. We review the literature examining the impacts of lactogens on fertility and energy homeostasis in the virgin state, during pregnancy and lactation and potential long-term impacts of reproductive experience. Taken together, the literature indicates that duration and pattern of lactogen exposure is a vital factor in the ability of these hormones to alter reproduction and food intake. Transient increases in prolactin, as typically seen in healthy virgin females and males, are unable to exert lasting impacts. Importantly, both suppression of fertility and increased food intake are only observed following exposure to chronically-elevated levels of lactogens. Physiologically, the only time this pattern of lactogenic secretion is maintained in the healthy female is during pregnancy and lactation, when co-ordination between these regulatory systems emerges. This article is part of the special issue on 'Neuropeptides'.


Assuntos
Metabolismo Energético/fisiologia , Fertilidade/fisiologia , Lactação/metabolismo , Lactogênio Placentário/metabolismo , Prolactina/fisiologia , Reprodução/fisiologia , Animais , Regulação do Apetite/fisiologia , Feminino , Humanos , Masculino , Gravidez
20.
FASEB J ; 34(3): 3902-3914, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31944423

RESUMO

To study the pathological effects of continuous hyperprolactinemia on food intake mechanisms we used female mice that lack dopamine D2 receptors in lactotropes (lacDrd2KO). These mice had lifelong hyperprolactinemia, increased food intake, and gradual development of obesity from 5 to 10 months of age. Ongoing endogenous prolactin signaling in lacDrd2KO mice was evidenced by increased basal phosphorylation of STAT5b in hypothalamic areas related to food intake, such as the arcuate (ARN), dorsomedial (DMN), and ventromedial nuclei. In the ARN of young lacDrd2KO mice there were higher Prlr mRNA levels and in obese 10-month-old lacDrd2KO mice increased expression of the orexigenic genes Neuropeptide Y (Npy) and Agouti-related peptide, compared to controls. Furthermore, Npy expression was increased in the DMN, probably contributing to increased food intake and decreased expression of Uncoupling protein-1 in brown adipose tissue, both events favoring weight gain. Leptin resistance in obese lacD2RKO mice was evidenced by its failure to lower food intake and a dampened response of STAT3 phosphorylation, specifically in the mediobasal hypothalamus. Our results suggest that pathological chronically high prolactin levels, as found in psychiatric treatments or patients with prolactinomas, may impact on specific hypothalamic nuclei altering gene expression, leptin response, and food intake.


Assuntos
Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Prolactina/farmacologia , Animais , Glicemia/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Imuno-Histoquímica , Insulina/sangue , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...