Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1355764, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529283

RESUMO

Skin and soft tissue infections (SSTIs) are the most common diseases caused by Staphylococcus aureus (S. aureus), which can progress to threatening conditions due to recurrences and systemic complications. Staphylococcal protein A (SpA) is an immunomodulator antigen of S. aureus, which allows bacterial evasion from the immune system by interfering with different types of immune responses to pathogen antigens. Immunization with SpA could potentially unmask the pathogen to the immune system, leading to the production of antibodies that can protect from a second encounter with S. aureus, as it occurs in skin infection recurrences. Here, we describe a study in which mice are immunized with a mutated form of SpA mixed with the Adjuvant System 01 (SpAmut/AS01) before a primary S. aureus skin infection. Although mice are not protected from the infection under these conditions, they are able to mount a broader pathogen-specific functional immune response that results in protection against systemic dissemination of bacteria following an S. aureus second infection (recurrence). We show that this "hidden effect" of SpA can be partially explained by higher functionality of induced anti-SpA antibodies, which promotes better phagocytic activity. Moreover, a broader and stronger humoral response is elicited against several S. aureus antigens that during an infection are masked by SpA activity, which could prevent S. aureus spreading from the skin through the blood.


Assuntos
Dermatopatias Infecciosas , Infecções Estafilocócicas , Animais , Camundongos , Proteína Estafilocócica A , Staphylococcus aureus , Vacinação
2.
Pharmaceutics ; 15(7)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37514070

RESUMO

Aluminum-based adjuvants will continue to be a key component of currently approved and next generation vaccines, including important combination vaccines. The widespread use of aluminum adjuvants is due to their excellent safety profile, which has been established through the use of hundreds of millions of doses in humans over many years. In addition, they are inexpensive, readily available, and are well known and generally accepted by regulatory agencies. Moreover, they offer a very flexible platform, to which many vaccine components can be adsorbed, enabling the preparation of liquid formulations, which typically have a long shelf life under refrigerated conditions. Nevertheless, despite their extensive use, they are perceived as relatively 'weak' vaccine adjuvants. Hence, there have been many attempts to improve their performance, which typically involves co-delivery of immune potentiators, including Toll-like receptor (TLR) agonists. This approach has allowed for the development of improved aluminum adjuvants for inclusion in licensed vaccines against HPV, HBV, and COVID-19, with others likely to follow. This review summarizes the various aluminum salts that are used in vaccines and highlights how they are prepared. We focus on the analytical challenges that remain to allowing the creation of well-characterized formulations, particularly those involving multiple antigens. In addition, we highlight how aluminum is being used to create the next generation of improved adjuvants through the adsorption and delivery of various TLR agonists.

3.
Vaccines (Basel) ; 11(1)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36680000

RESUMO

Although aluminium-based vaccines have been used for almost over a century, their mechanism of action remains unclear. It is established that antigen adsorption to the adjuvant facilitates delivery of the antigen to immune cells at the injection site. To further increase our understanding of aluminium-based vaccines, it is important to gain additional insights on the interactions between the aluminium and antigens, including antigen distribution over the adjuvant particles. Immuno-assays can further help in this regard. In this paper, we evaluated how established formulation strategies (i.e., sequential, competitive, and separate antigen addition) applied to four different antigens and aluminium oxyhydroxide, lead to formulation changes over time. Results showed that all formulation samples were stable, and that no significant changes were observed in terms of physical-chemical properties. Antigen distribution across the bulk aluminium population, however, did show a maturation effect, with some initial dependence on the formulation approach and the antigen adsorption strength. Sequential and competitive approaches displayed similar results in terms of the homogeneity of antigen distribution across aluminium particles, while separately adsorbed antigens were initially more highly poly-dispersed. Nevertheless, the formulation sample prepared via separate adsorption also reached homogeneity according to each antigen adsorption strength. This study indicated that antigen distribution across aluminium particles is a dynamic feature that evolves over time, which is initially influenced by the formulation approach and the specific adsorption strength, but ultimately leads to homogeneous formulations.

5.
Semin Immunol ; 56: 101544, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34895823

RESUMO

Purified vaccine antigens offer important safety and reactogenicity advantages compared with live attenuated or whole killed virus and bacterial vaccines. However, they require the addition of adjuvants to induce the magnitude, duration and quality of immune response required to achieve protective immunity. Aluminium salts have been used as adjuvants in vaccines for almost a century. In the literature, they are often referred to as aluminium-based adjuvants (ABAs), or aluminium salt-containing adjuvants or more simply "alum". All these terms are used to group aluminium suspensions that are very different in terms of atomic composition, size, and shape. They differ also in stability, antigen-adsorption, and antigen-release kinetics. Critically, these parameters also have a profound effect on the character and magnitude of the immune response elicited. Recent findings suggest that, by reducing the size of aluminium from micro to nanometers, a more effective adjuvant is obtained, together with the ability to sterile filter the vaccine product. However, the behaviour of aluminium nanoparticles in vaccine formulations is different from microparticles, requiring specific formulation strategies, as well as a more detailed understanding of how formulation influences the immune response generated. Here we review the current state of art of aluminium nanoparticles as adjuvants, with a focus on their immunobiology, preparation methods, formulation optimisation and stabilisation.


Assuntos
Nanopartículas , Vacinas , Adjuvantes Imunológicos/farmacologia , Alumínio , Humanos
6.
J Pharm Sci ; 107(6): 1577-1585, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29421216

RESUMO

Adjuvants are necessary to enable vaccine development against a significant number of challenging pathogens for which effective vaccines are not available. We engineered a novel small-molecule immune potentiator, a benzonaphthyridine agonist targeting toll-like receptor 7 (TLR7), as a vaccine adjuvant. TLR7 agonist (TLR7a) was engineered to be adsorbed onto aluminum hydroxide (AlOH), and the resulting AlOH/TLR7a was evaluated as a vaccine adjuvant. AlOH/TLR7a exploits the flexibility of AlOH formulations, has an application in many vaccine candidates, and induced good efficacy and safety profiles against all tested antigens (bacterial- and viral-derived protein antigens, toxoids, glycoconjugates, and so forth) in many animal models, including nonhuman primates. In this article, we describe the outcome of the physicochemical characterization of AlOH/TLR7a. Reverse-phase ultra performance liquid chromatography, confocal microscopy, flow cytometry, zeta potential, and phosphophilicity assays were used as tools to demonstrate the association of TLR7a to AlOH and to characterize this novel formulation. Raman spectroscopy, nuclear magnetic resonance, and mass spectroscopy were also used to investigate the interaction between TLR7a and AlOH (data not shown). This pivotal work paved the way for AlOH/TLR7a to progress into the clinic for evaluation as an adjuvant platform for vaccines against challenging preventable diseases.


Assuntos
Adjuvantes Imunológicos/química , Hidróxido de Alumínio/química , Naftiridinas/química , Receptor 7 Toll-Like/agonistas , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Adsorção , Hidróxido de Alumínio/administração & dosagem , Hidróxido de Alumínio/farmacologia , Animais , Humanos , Naftiridinas/administração & dosagem , Naftiridinas/farmacologia
7.
Sci Rep ; 6: 38043, 2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27901071

RESUMO

Staphylococcus aureus is the major cause of human septic arthritis and osteomyelitis, which deserve special attention due to their rapid evolution and resistance to treatment. The progression of the disease depends on both bacterial presence in situ and uncontrolled disruptive immune response, which is responsible for chronic disease. Articular and bone infections are often the result of blood bacteremia, with the knees and hips being the most frequently infected joints showing the worst clinical outcome. We report the development of a hematogenous model of septic arthritis in murine knees, which progresses from an acute to a chronic phase, similarly to what occurs in humans. Characterization of the local and systemic inflammatory and immune responses following bacterial infection brought to light specific signatures of disease. Immunization of mice with the vaccine formulation we have recently described (4C-Staph), induced a strong antibody response and specific CD4+ effector memory T cells, and resulted in reduced bacterial load in the knee joints, a milder general inflammatory state and protection against bacterial-mediated cellular toxicity. Possible correlates of protection are finally proposed, which might contribute to the development of an effective vaccine for human use.


Assuntos
Artrite Infecciosa , Articulação do Joelho , Infecções Estafilocócicas , Vacinas Antiestafilocócicas , Staphylococcus aureus/imunologia , Vacinação , Animais , Artrite Infecciosa/imunologia , Artrite Infecciosa/microbiologia , Artrite Infecciosa/patologia , Artrite Infecciosa/prevenção & controle , Feminino , Articulação do Joelho/imunologia , Articulação do Joelho/microbiologia , Articulação do Joelho/patologia , Camundongos , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/patologia , Infecções Estafilocócicas/prevenção & controle , Vacinas Antiestafilocócicas/imunologia , Vacinas Antiestafilocócicas/farmacologia
8.
PLoS One ; 11(1): e0147767, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26812180

RESUMO

A rapidly acting, single dose vaccine against Staphylococcus aureus would be highly beneficial for patients scheduled for major surgeries or in intensive care units. Here we show that one immunization with a multicomponent S. aureus candidate vaccine, 4C-Staph, formulated with a novel TLR7-dependent adjuvant, T7-alum, readily protected mice from death and from bacterial dissemination, both in kidney abscess and peritonitis models, outperforming alum-formulated vaccine. This increased efficacy was paralleled by higher vaccine-specific and α-hemolysin-neutralizing antibody titers and Th1/Th17 cell responses. Antibodies played a crucial protective role, as shown by the lack of protection of 4C-Staph/T7-alum vaccine in B-cell-deficient mice and by serum transfer experiments. Depletion of effector CD4+ T cells not only reduced survival but also increased S. aureus load in kidneys of mice immunized with 4C-Staph/T7-alum. The role of IL-17A in the control of bacterial dissemination in 4C-Staph/T7-alum vaccinated mice was indicated by in vivo neutralization experiments. We conclude that single dose 4C-Staph/T7-alum vaccine promptly and efficiently protected mice against S. aureus through the combined actions of antibodies, CD4+ effector T cells, and IL-17A. These data suggest that inclusion of an adjuvant that induces not only fast antibody responses but also IL-17-producing cell-mediated effector responses could efficaciously protect patients scheduled for major surgeries or in intensive care units.


Assuntos
Anticorpos Antibacterianos/imunologia , Linfócitos T CD4-Positivos/imunologia , Interleucina-17/metabolismo , Infecções Estafilocócicas/prevenção & controle , Vacinas Antiestafilocócicas/imunologia , Staphylococcus aureus/imunologia , Receptor 7 Toll-Like/metabolismo , Adjuvantes Imunológicos , Animais , Anticorpos Neutralizantes/imunologia , Linfócitos T CD4-Positivos/citologia , Citocinas/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Baço/metabolismo , Baço/patologia , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/mortalidade , Staphylococcus aureus/genética , Taxa de Sobrevida , Células Th1/imunologia , Células Th17/imunologia , Receptor 7 Toll-Like/imunologia
9.
J Immunol ; 195(4): 1617-27, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26170383

RESUMO

Induction of persistent protective immune responses is a key attribute of a successful vaccine formulation. MF59 adjuvant, an oil-in-water emulsion used in human vaccines, is known to induce persistent high-affinity functional Ab titers and memory B cells, but how it really shapes the Ag-specific B cell compartment is poorly documented. In this study, we characterized the Ab- and Ag-specific B cell compartment in wild-type mice immunized with HlaH35L, a Staphylococcus aureus Ag known to induce measurable functional Ab responses, formulated with MF59 or aluminum salts, focusing on germinal centers (GC) in secondary lymphoid organs. Taking advantage of single-cell flow cytometry analyses, HlaH35L-specific B cells were characterized for the expression of CD38 and GL-7, markers of memory and GC, respectively, and for CD80 and CD73 activation markers. We demonstrated that immunization with MF59-, but not aluminum salt-adjuvanted HlaH35L, induced expanded Ag-specific CD73(+)CD80(-) GC B cells in proximal- and distal-draining lymph nodes, and promoted the persistence of GC B cells, detected up to 4 mo after immunization. In addition to increasing GC B cells, MF59-adjuvanted HlaH35L also increased the frequency of T follicular helper cells. This work extends previous knowledge regarding adaptive immune responses to MF59-adjuvanted vaccines, and, to our knowledge, for the first time an adjuvant used in human licensed products is shown to promote strong and persistent Ag-specific GC responses that might benefit the rational design of new vaccination strategies.


Assuntos
Linfócitos B/citologia , Linfócitos B/imunologia , Diferenciação Celular , Centro Germinativo/citologia , Centro Germinativo/imunologia , Polissorbatos , Esqualeno , Vacinação , Adjuvantes Imunológicos , Animais , Anticorpos Antibacterianos/imunologia , Especificidade de Anticorpos/imunologia , Antígenos CD/metabolismo , Linfócitos B/metabolismo , Toxinas Bacterianas/imunologia , Quimiotaxia de Leucócito/imunologia , Feminino , Proteínas Hemolisinas/imunologia , Imunofenotipagem , Linfonodos/imunologia , Ativação Linfocitária/imunologia , Camundongos , Fenótipo , Esqualeno/imunologia , Vacinas Antiestafilocócicas
10.
Vaccine ; 33 Suppl 2: B40-3, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-26022566

RESUMO

A panel of researchers working in different areas of adjuvanted vaccines deliberated over the topic, "Gaps in knowledge and prospects for research of adjuvanted vaccines" at, "Enhancing Vaccine Immunity and Value" conference held in July 2014. Several vaccine challenges and applications for new adjuvant technologies were discussed.


Assuntos
Adjuvantes Imunológicos/isolamento & purificação , Adjuvantes Imunológicos/farmacologia , Descoberta de Drogas/métodos , Vacinas/imunologia , Vacinas/isolamento & purificação , Pesquisa Biomédica/métodos , Humanos
11.
Infect Immun ; 83(8): 3157-63, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26015481

RESUMO

Staphylococcus aureus is a human bacterial pathogen causing a variety of diseases. The occurrence of multidrug-resistant strains of Staphylococcus aureus underlines the need for a vaccine. Defining immune correlates of protection may support the design of an effective vaccine. We used a murine Staphylococcus aureus infection model, in which bacteria were inoculated in an air pouch generated on the back of the animal. Analysis of the air-pouch content in mice immunized or not with an adjuvanted multiantigen vaccine formulation, four-component S. aureus vaccine (4C-Staph), prior to infection allowed us to measure bacteria, cytokines, and 4C-Staph-specific antibodies and to analyze host immune cells recruited to the infection site. Immunization with 4C-Staph resulted in accumulation of antigen-specific antibodies in the pouch and mitigated the infection. Neutrophils were the most abundant cells in the pouch, and they showed the upregulation of Fcγ receptor (FcγR) following immunization with 4C-Staph. Reduction of the infection was also obtained in mice immunized with 4C-Staph and depleted of neutrophils; these mice showed an increase in monocytes and macrophages. Upregulation of the FcγR and the presence of antigen-specific antibodies induced by immunization with 4C-Staph may contribute to increase bacterial opsonophagocytosis. Protection in neutropenic mice indicated that an effective vaccine could activate alternative protection mechanisms compensating for neutropenia, a condition often occurring in S. aureus-infected patients.


Assuntos
Monócitos/imunologia , Neutropenia/imunologia , Neutrófilos/imunologia , Receptores de IgG/genética , Infecções Estafilocócicas/imunologia , Vacinas Antiestafilocócicas/imunologia , Staphylococcus aureus/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Imunização , Camundongos , Camundongos Endogâmicos C57BL , Neutropenia/genética , Neutropenia/microbiologia , Receptores de IgG/imunologia , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/microbiologia , Vacinas Antiestafilocócicas/administração & dosagem , Vacinas Antiestafilocócicas/genética , Staphylococcus aureus/genética
12.
Sci Transl Med ; 6(263): 263ra160, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25411473

RESUMO

Adjuvants increase vaccine potency largely by activating innate immunity and promoting inflammation. Limiting the side effects of this inflammation is a major hurdle for adjuvant use in vaccines for humans. It has been difficult to improve on adjuvant safety because of a poor understanding of adjuvant mechanism and the empirical nature of adjuvant discovery and development historically. We describe new principles for the rational optimization of small-molecule immune potentiators (SMIPs) targeting Toll-like receptor 7 as adjuvants with a predicted increase in their therapeutic indices. Unlike traditional drugs, SMIP-based adjuvants need to have limited bioavailability and remain localized for optimal efficacy. These features also lead to temporally and spatially restricted inflammation that should decrease side effects. Through medicinal and formulation chemistry and extensive immunopharmacology, we show that in vivo potency can be increased with little to no systemic exposure, localized innate immune activation and short in vivo residence times of SMIP-based adjuvants. This work provides a systematic and generalizable approach to engineering small molecules for use as vaccine adjuvants.


Assuntos
Adjuvantes Imunológicos/farmacologia , Desenho de Fármacos , Vacinas/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacocinética , Disponibilidade Biológica
13.
Artigo em Inglês | MEDLINE | ID: mdl-24009891

RESUMO

BACKGROUND: Outer membrane vesicles (OMVs) are spheroid particles released by all Gram-negative bacteria as a result of the budding out of the outer membrane. Since they carry many of the bacterial surface-associated proteins and feature a potent built-in adjuvanticity, OMVs are being utilized as vaccines, some of which commercially available. Recently, methods for manipulating the protein content of OMVs have been proposed, thus making OMVs a promising platform for recombinant, multivalent vaccines development. METHODS: Chlamydia muridarum DO serine protease HtrA, an antigen which stimulates strong humoral and cellular responses in mice and humans, was expressed in Escherichia coli fused to the OmpA leader sequence to deliver it to the OMV compartment. Purified OMVs carrying HtrA (CM rHtrA-OMV) were analyzed for their capacity to induce antibodies capable of neutralizing Chlamydia infection of LLC-MK2 cells in vitro. RESULTS: CM rHtrA-OMV immunization in mice induced antibodies that neutralize Chlamydial invasion as judged by an in vitro infectivity assay. This was remarkably different from what observed with an enzymatically functional recombinant HtrA expressed in, and purified from the E. coli cytoplasm (CM rHtrA). The difference in functionality between anti-CM rHtrA and anti-CM rHtrA-OMV antibodies was associated to a different pattern of protein epitopes recognition. The epitope recognition profile of anti-CM HtrA-OMV antibodies was similar to that induced in mice during Chlamydial infection. CONCLUSIONS: When expressed in OMVs HtrA appears to assume a conformation similar to the native one and this results in the elicitation of functional immune responses. These data further support the potentiality of OMVs as vaccine platform.

14.
Anal Biochem ; 418(2): 224-30, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21820996

RESUMO

Flow cytometry (FC) has been widely used in biological research; however, its use for vaccine characterization has been very limited. Here we describe the development of an FC method for the direct quantification of two Neisseria meningitidis vaccine antigens, in mono- and multivalent formulations, while still adsorbed on aluminum hydroxide (AH) suspension. The antibody-based method is specific and sensitive. Because FC allows microscopic particle examination, the entire aluminum suspension carrying adsorbed antigen(s) can be analyzed directly. In addition to determining antigen concentration and identity, the assay is able to determine the distribution of the antigens on AH. High correlation coefficients (r(2)) were routinely achieved for a broad range of antigen doses from 0 to 150 µg/dose. Traditional assays for quantitative and qualitative antigen characterization on AH particles involve either complete aluminum dissolution or antigen desorption from the adjuvant. Because our direct method uses the whole AH suspension, the cumbersome steps used by traditional methods are not required. Those steps are often inefficient in desorbing the antigens and in some cases can lead to protein denaturation. We believe that this novel FC-based assay could circumvent some of the complex and tedious antigen-adjuvant desorption methods.


Assuntos
Adjuvantes Imunológicos/química , Hidróxido de Alumínio/química , Antígenos Virais/análise , Citometria de Fluxo/métodos , Vacinas Meningocócicas/análise , Adsorção , Antígenos Virais/imunologia , Antígenos Virais/metabolismo , Eletroforese em Gel de Poliacrilamida , Humanos , Immunoblotting , Infecções Meningocócicas/imunologia , Infecções Meningocócicas/metabolismo , Infecções Meningocócicas/patologia , Vacinas Meningocócicas/imunologia , Vacinas Meningocócicas/metabolismo , Neisseria meningitidis/imunologia , Neisseria meningitidis/metabolismo
15.
Proc Natl Acad Sci U S A ; 108(24): 9969-74, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21628568

RESUMO

Natural immunity against obligate and/or facultative intracellular pathogens is usually mediated by both humoral and cellular immunity. The identification of those antigens stimulating both arms of the immune system is instrumental for vaccine discovery. Although high-throughput technologies have been applied for the discovery of antibody-inducing antigens, few examples of their application for T-cell antigens have been reported. We describe how the compilation of the immunome, here defined as the pool of immunogenic antigens inducing T- and B-cell responses in vivo, can lead to vaccine candidates against Chlamydia trachomatis. We selected 120 C. trachomatis proteins and assessed their immunogenicity using two parallel high-throughput approaches. Protein arrays were generated and screened with sera from C. trachomatis-infected patients to identify antibody-inducing antigens. Splenocytes from C. trachomatis-infected mice were stimulated with 79 proteins, and the frequency of antigen-specific CD4(+)/IFN-γ(+) T cells was analyzed by flow cytometry. We identified 21 antibody-inducing antigens, 16 CD4(+)/IFN-γ(+)-inducing antigens, and five antigens eliciting both types of responses. Assessment of their protective activity in a mouse model of Chlamydia muridarum lung infection led to the identification of seven antigens conferring partial protection when administered with LTK63/CpG adjuvant. Protection was largely the result of cellular immunity as assessed by CD4(+) T-cell depletion. The seven antigens provided robust additive protection when combined in four-antigen combinations. This study paves the way for the development of an effective anti-Chlamydia vaccine and provides a general approach for the discovery of vaccines against other intracellular pathogens.


Assuntos
Antígenos de Bactérias/imunologia , Linfócitos B/imunologia , Vacinas Bacterianas/imunologia , Chlamydia trachomatis/imunologia , Linfócitos T/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Vacinas Bacterianas/uso terapêutico , Western Blotting , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular , Infecções por Chlamydia/imunologia , Infecções por Chlamydia/microbiologia , Infecções por Chlamydia/prevenção & controle , Chlamydia muridarum/imunologia , Chlamydia trachomatis/metabolismo , Feminino , Células HeLa , Humanos , Soros Imunes/imunologia , Imunização , Interferon gama/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Células Th1/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...