Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
PLoS One ; 18(12): e0294764, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38039300

RESUMO

BACKGROUND: Cholesteryl ester transfer protein (CETP) transfers cholesteryl esters in plasma from high density lipoprotein (HDL) to very low density lipoprotein and low density lipoprotein. Loss-of-function variants in the CETP gene cause elevated levels of HDL cholesterol. In this study, we have determined the functional consequences of 24 missense variants in the CETP gene. The 24 missense variants studied were the ones reported in the Human Gene Mutation Database and in the literature to affect HDL cholesterol levels, as well as two novel variants identified at the Unit for Cardiac and Cardiovascular Genetics, Oslo University Hospital in subjects with hyperalphalipoproteinemia. METHODS: HEK293 cells were transiently transfected with mutant CETP plasmids. The amounts of CETP protein in lysates and media were determined by Western blot analysis, and the lipid transfer activities of the CETP variants were determined by a fluorescence-based assay. RESULTS: Four of the CETP variants were not secreted. Five of the variants were secreted less than 15% compared to the WT-CETP, while the other 15 variants were secreted in varying amounts. There was a linear relationship between the levels of secreted protein and the lipid transfer activities (r = 0.96, p<0.001). Thus, the secreted variants had similar specific lipid transfer activities. CONCLUSION: The effect of the 24 missense variants in the CETP gene on the lipid transfer activity was mediated predominantly by their impact on the secretion of the CETP protein. The four variants that prevented CETP secretion cause autosomal dominant hyperalphalipoproteinemia. The five variants that markedly reduced secretion of the respective variants cause mild hyperalphalipoproteinemia. The majority of the remaining 15 variants had minor effects on the secretion of CETP, and are considered neutral genetic variants.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol , Ésteres do Colesterol , Humanos , Proteínas de Transferência de Ésteres de Colesterol/genética , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , HDL-Colesterol , Células HEK293 , Transporte Biológico , Ésteres do Colesterol/metabolismo
2.
J Clin Lipidol ; 17(6): 800-807, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37718180

RESUMO

BACKGROUND: Molecular genetic testing of patients with hypobetalipoproteinemia may identify a genetic cause that can form the basis for starting proper therapy. Identifying a genetic cause may also provide novel data on the structure-function relationship of the mutant protein. OBJECTIVE: To identify a genetic cause of hypobetalipoproteinemia in a patient with levels of low density lipoprotein cholesterol at the detection limit of 0.1 mmol/l. METHODS: DNA sequencing of the translated exons with flanking intron sequences of the genes adenosine triphosphate-binding cassette transporter 1, angiopoietin-like protein 3, apolipoprotein B, apolipoprotein A1, lecithin-cholesterol acyltransferase, microsomal triglyceride transfer protein and proprotein convertase subtilisin/kexin type 9. RESULTS: The patient was homozygous for mutation Q384K (c.1150C>A) in the apolipoprotein B gene, and this mutation segregated with hypobetalipoproteinemia in the family. Residue Gln384 is located in the large lipid transfer module of apoB that has been suggested to be important for lipidation of apolipoprotein B through interaction with microsomal triglyceride transfer protein. Based on measurements of serum levels of triglycerides and apolipoprotein B-48 after an oral fat load, we conclude that the patient was able to synthesize apolipoprotein B-48 in the intestine in a seemingly normal fashion. CONCLUSION: Our data indicate that mutation Q384K severely reduces the secretion of apolipoprotein B-100 in the liver without reducing the secretion of apolipoprotein B-48 in the intestine. Possible mechanisms for the different effects of this and other missense mutations affecting the large lipid transfer module on the two forms of apoB are discussed.


Assuntos
Hipobetalipoproteinemias , Mutação de Sentido Incorreto , Humanos , Apolipoproteína B-100/genética , Apolipoproteína B-48 , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo , Intestinos , Hipobetalipoproteinemias/genética , Mutação , Fígado/metabolismo
4.
Sci Transl Med ; 13(582)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627483

RESUMO

Primary sclerosing cholangitis (PSC) is a chronic inflammatory liver disease without clear etiology or effective treatment. Genetic factors contribute to PSC pathogenesis, but so far, no causative mutation has been found. We performed whole-exome sequencing in a family with autosomal dominant inheritance of PSC and identified a heterozygous germline missense mutation in SEMA4D, encoding a K849T variant of CD100. The mutation was located in an evolutionarily conserved, unstructured cytosolic region of CD100 affecting downstream signaling. It was found to alter the function of CD100-expressing cells with a bias toward the T cell compartment that caused increased proliferation and impaired interferon-γ (IFN-γ) production after stimulation. Homologous mutation knock-in mice developed similar IFN-γ impairment in T cells and were more prone to develop severe cholangitis when exposed to 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet. Transfer of wild-type T cells to knock-in mice before and during DDC exposure attenuated cholangitis. Taken together, we identified an inherited mutation in the disordered cytosolic region of CD100 resulting in T cell functional defects. Our findings suggest a protective role for T cells in PSC that might be used therapeutically.


Assuntos
Antígenos CD/genética , Colangite Esclerosante , Semaforinas/genética , Animais , Colangite Esclerosante/genética , Técnicas de Introdução de Genes , Células Germinativas , Mutação em Linhagem Germinativa , Interferon gama , Camundongos , Linfócitos T
5.
J Chem Phys ; 152(20): 204104, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32486677

RESUMO

DIRAC is a freely distributed general-purpose program system for one-, two-, and four-component relativistic molecular calculations at the level of Hartree-Fock, Kohn-Sham (including range-separated theory), multiconfigurational self-consistent-field, multireference configuration interaction, electron propagator, and various flavors of coupled cluster theory. At the self-consistent-field level, a highly original scheme, based on quaternion algebra, is implemented for the treatment of both spatial and time reversal symmetry. DIRAC features a very general module for the calculation of molecular properties that to a large extent may be defined by the user and further analyzed through a powerful visualization module. It allows for the inclusion of environmental effects through three different classes of increasingly sophisticated embedding approaches: the implicit solvation polarizable continuum model, the explicit polarizable embedding model, and the frozen density embedding model.

6.
Sci Rep ; 10(1): 5656, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32221390

RESUMO

Human phosphoglucomutase 1 (PGM1) is an evolutionary conserved enzyme that belongs to the ubiquitous and ancient α-D-phosphohexomutases, a large enzyme superfamily with members in all three domains of life. PGM1 catalyzes the bi-directional interconversion between α-D-glucose 1-phosphate (G1P) and α-D-glucose 6-phosphate (G6P), a reaction that is essential for normal carbohydrate metabolism and also important in the cytoplasmic biosynthesis of nucleotide sugars needed for glycan biosynthesis. Clinical studies have shown that mutations in the PGM1 gene may cause PGM1 deficiency, an inborn error of metabolism previously classified as a glycogen storage disease, and PGM1 deficiency was recently also shown to be a congenital disorder of glycosylation. Here we present three crystal structures of the isoform 2 variant of PGM1, both as a free enzyme and in complex with its substrate and product. The structures show the longer N-terminal of this PGM1 variant, and the ligand complex structures reveal for the first time the detailed structural basis for both G1P substrate and G6P product recognition by human PGM1. We also show that PGM1 and the paralogous gene PGM5 are the results of a gene duplication event in a common ancestor of jawed vertebrates, and, importantly, that both PGM1 isoforms are conserved and of functional significance in all vertebrates. Our finding that PGM1 encodes two equally conserved and functionally important isoforms in the human organism should be taken into account in the evaluation of disease-related missense mutations in patients in the future.


Assuntos
Fosfoglucomutase/genética , Fosfotransferases (Fosfomutases)/genética , Isoformas de Proteínas/genética , Animais , Domínio Catalítico/genética , Citoplasma/genética , Glucose-6-Fosfato/genética , Glucofosfatos/genética , Doença de Depósito de Glicogênio/genética , Glicosilação , Humanos , Ligantes , Mutação de Sentido Incorreto/genética , Vertebrados/genética
7.
Proteins ; 88(3): 440-448, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31587363

RESUMO

Lysosomal acid lipase (LAL) plays an important role in lipid metabolism by performing hydrolysis of triglycerides and cholesteryl esters in the lysosome. Based upon characteristics of LAL purified from human liver, it has been proposed that LAL is a proprotein with a 55 residue propeptide that may be essential for proper folding, intracellular transport, or enzymatic function. However, the biological significance of such a propeptide has not been fully elucidated. In this study, we have performed a series of studies in cultured HepG2 and HeLa cells to determine the role of the putative propeptide. However, by Western blot analysis and subcellular fractionation, we have not been able to identify a cleaved LAL lacking the N-terminal 55 residues. Moreover, mutating residues surrounding the putative cleavage site at Lys76 ↓ in order to disrupt a proteinase recognition sequence, did not affect LAL activity. Furthermore, forcing cleavage at Lys76 ↓ by introducing the optimal furin cleavage site RRRR↓EL between residues 76 and 77, did not affect LAL activity. These data, in addition to bioinformatics analyses, indicate that LAL is not a proprotein. Thus, it is possible that the previously reported cleavage at Lys76 ↓ could have resulted from exposure to proteolytic enzymes during the multistep purification procedure.


Assuntos
Himecromona/análogos & derivados , Lisossomos/enzimologia , Esterol Esterase/química , Sequência de Aminoácidos , Ensaios Enzimáticos , Expressão Gênica , Células HeLa , Células Hep G2 , Humanos , Himecromona/química , Himecromona/metabolismo , Cinética , Lisossomos/química , Modelos Moleculares , Mutação , Plasmídeos/química , Plasmídeos/metabolismo , Estrutura Secundária de Proteína , Proteólise , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Esterol Esterase/genética , Esterol Esterase/metabolismo , Especificidade por Substrato
8.
PLoS One ; 14(11): e0225081, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31703097

RESUMO

Endonuclease V (ENDOV) is a ribonuclease with affinity for inosine which is the deamination product of adenosine. The genomes of most organisms, including human, encode ENDOV homologs, yet knowledge about in vivo functions and gene regulation is sparse. To contribute in this field, we analyzed mRNA and protein expression of human ENDOV (hENDOV). Analyses of public sequence databases revealed numerous hENDOV transcript variants suggesting extensive alternative splicing. Many of the transcripts lacked one or more exons corresponding to conserved regions of the ENDOV core domain, suggesting that these transcripts do not encode for active proteins. Three complete transcripts were found with open reading frames encoding 282, 308 and 309 amino acids, respectively. Recombinant hENDOV 308 and hENDOV 309 share the same cleavage activity as hENDOV 282 which is the variant that has been used in previous studies of hENDOV. However, hENDOV 309 binds inosine-containing RNA with stronger affinity than the other isoforms. Overexpressed GFP-fused isoforms were found in cytoplasm, nucleoli and arsenite induced stress granules in human cells as previously reported for hENDOV 282. RT-qPCR analysis of the 3'-termini showed that hENDOV 308 and hENDOV 309 transcripts are more abundant than hENDOV 282 transcripts in immortalized cell lines, but not in primary cells, suggesting that cells regulate hENDOV mRNA expression. In spite of the presence of all three full-length transcripts, mass spectrometry analyses identified peptides corresponding to the hENDOV 309 isoform only. This result suggests that further studies of human ENDOV should rather encompass the hENDOV 309 isoform.


Assuntos
Processamento Alternativo , Desoxirribonuclease (Dímero de Pirimidina)/genética , RNA Mensageiro/genética , Proteínas Virais/genética , Linhagem Celular , Humanos , Isoformas de Proteínas
9.
Curr Biol ; 29(20): 3538-3548.e7, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31607533

RESUMO

Abscission, the final step of cytokinesis, cleaves the thin intercellular bridge connecting the two daughter cells [1-6]. The scaffold protein ALIX is a core component of the abscission machinery with an evolutionarily conserved role in midbody recruitment of ESCRT-III [7-11], which mediates the final cut [1-5, 8-10, 12-14]. In mammalian cells, the centralspindlin complex recruits the major midbody organizer CEP55 that directly binds and recruits ALIX and ESCRT-I [7-9, 15-17], which in turn cooperatively recruit ESCRT-III [8, 9, 18]. However, CEP55 is missing in Drosophila melanogaster and other invertebrates [6, 9, 19], and it is unknown how the abscission machinery is recruited to the midbody in the absence of CEP55. Here, we address how Drosophila ALIX is recruited to the midbody. Surprisingly, ALIX localizes to the midbody via its V-domain, independently of the GPPX3Y motif in the proline-rich region that recruits human ALIX [8, 9]. We elucidate that the centralspindlin component Pavarotti (H.s.MKLP1) interacts with the V-domain of ALIX to recruit it to the midbody. Specifically, our results indicate that an LxxLF motif in Pavarotti directly interacts with a conserved hydrophobic pocket in the ALIX V-domain, which in human ALIX binds (L)YPXnL/LxxLF motifs of virus proteins [20-28]. Thus, our study identifies that ALIX is recruited by an analogous mechanism during abscission in Drosophila as during virus budding in mammalian cells and an ancestral role for centralspindlin in recruiting the abscission machinery to the midbody.


Assuntos
Citocinese/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Proteínas dos Microfilamentos/genética , Fuso Acromático/fisiologia , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Proteínas dos Microfilamentos/metabolismo
10.
Hum Mol Genet ; 28(18): 3043-3052, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31131398

RESUMO

Hydrolysis of cholesteryl esters and triglycerides in the lysosome is performed by lysosomal acid lipase (LAL). In this study we have investigated how 23 previously identified missense mutations in the LAL gene (LIPA) (OMIM# 613497) affect the structure of the protein and thereby disrupt LAL activity. Moreover, we have performed transfection studies to study intracellular transport of the 23 mutants. Our main finding was that most pathogenic mutations result in defective enzyme activity by affecting the normal folding of LAL. Whereas, most of the mutations leading to reduced stability of the cap domain did not alter intracellular transport, nearly all mutations that affect the stability of the core domain gave rise to a protein that was not efficiently transported from the endoplasmic reticulum (ER) to the Golgi apparatus. As a consequence, ER stress was generated that is assumed to result in ER-associated degradation of the mutant proteins. The two LAL mutants Q85K and S289C were selected to study whether secretion-defective mutants could be rescued from ER-associated degradation by the use of chemical chaperones. Of the five chemical chaperones tested, only the proteasomal inhibitor MG132 markedly increased the amount of mutant LAL secreted. However, essentially no increased enzymatic activity was observed in the media. These data indicate that the use of chemical chaperones to promote the exit of folding-defective LAL mutants from the ER, may not have a great therapeutic potential as long as these mutants appear to remain enzymatically inactive.


Assuntos
Mutação de Sentido Incorreto , Esterol Esterase/genética , Esterol Esterase/metabolismo , Sequência de Aminoácidos , Células Cultivadas , Biologia Computacional/métodos , Estresse do Retículo Endoplasmático , Ativação Enzimática , Humanos , Modelos Moleculares , Conformação Proteica , Transporte Proteico , Proteólise , Esterol Esterase/biossíntese , Esterol Esterase/química , Relação Estrutura-Atividade
11.
Artigo em Inglês | MEDLINE | ID: mdl-29685966

RESUMO

Cytosine (C) in DNA is often modified to 5-methylcytosine (m5C) to execute important cellular functions. Despite the significance of m5C for epigenetic regulation in mammals, damage to m5C has received little attention. For instance, almost no studies exist on erroneous methylation of m5C by alkylating agents to doubly or triply methylated bases. Owing to chemical evidence, and because many prokaryotes express methyltransferases able to convert m5C into N4,5-dimethylcytosine (m N4,5C) in DNA, m N4,5C is probably present in vivo We screened a series of glycosylases from prokaryotic to human and found significant DNA incision activity of the Escherichia coli Nei and Fpg proteins at m N4,5C residues in vitro The activity of Nei was highest opposite cognate guanine followed by adenine, thymine (T) and C. Fpg-complemented Nei by exhibiting the highest activity opposite C followed by lower activity opposite T. To our knowledge, this is the first description of a repair enzyme activity at a further methylated m5C in DNA, as well as the first alkylated base allocated as a Nei or Fpg substrate. Based on our observed high sensitivity to nuclease S1 digestion, we suggest that m N4,5C occurs as a disturbing lesion in DNA and that Nei may serve as a major DNA glycosylase in E. coli to initiate its repair.This article is part of a discussion meeting issue 'Frontiers in epigenetic chemical biology'.


Assuntos
5-Metilcitosina/metabolismo , Citosina/análogos & derivados , DNA-Formamidopirimidina Glicosilase/genética , Desoxirribonuclease (Dímero de Pirimidina)/genética , Epigênese Genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Citosina/metabolismo , DNA-Formamidopirimidina Glicosilase/metabolismo , Desoxirribonuclease (Dímero de Pirimidina)/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Humanos , Metilação
12.
Hum Mol Genet ; 26(9): 1634-1642, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334946

RESUMO

Familial hypercholesterolemia (FH) is caused by mutations in the low density lipoprotein receptor (LDLR) gene. To study the impact of mutations affecting the hydrophobic transmembrane domain of the LDLR, each of the 22 amino acids of the transmembrane domain was individually mutated to arginine. The more centrally in the transmembrane domain an arginine was located, the lower amounts of the 120 kDa precursor LDLR in the endoplasmic reticulum were observed. This led to lower amounts of the 160 kDa mature LDLR on the cell surface. For the mutants V797R-LDLR, L798R-LDLR and L799R-LDLR a proportion of full-length receptors including the transmembrane and cytoplasmic domains, was secreted into the endoplasmic reticulum lumen to appear in the culture medium. When the transmembrane domain of the epidermal growth factor receptor (EGFR) was replaced by that of the mutant L799R-LDLR, similar effects were observed for the EGFR as for L799R-LDLR. Introducing arginines in the transmembrane domain of the LDLR also affected metalloproteinase cleavage of the ectodomain and γ-secretase cleavage within the transmembrane domain. The most likely explanation for the low amounts of the 120 kDa precursor is that a basic residue in the hydrophobic transmembrane domain prevents the mutant LDLR from being inserted in the endoplasmic reticulum membrane from the Sec61 translocon complex. As a consequence, quality control systems could be activated. However, our data indicate that proteasomal degradation, lysosomal degradation, autophagy or ectodomain cleavage were not the underlying mechanism for degradation of these mutant LDLRs.


Assuntos
Receptores de LDL/genética , Receptores de LDL/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Endocitose , Retículo Endoplasmático/metabolismo , Células Hep G2 , Humanos , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Domínios Proteicos , Transporte Proteico , Proteólise
13.
Brain ; 139(Pt 12): 3109-3120, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27742667

RESUMO

Progressive myoclonus epilepsy is a heterogeneous group of disorders characterized by myoclonic and tonic-clonic seizures, ataxia and cognitive decline. We here present two affected brothers. At 9 months of age the elder brother developed ataxia and myoclonic jerks. In his second year he lost the ability to walk and talk, and he developed drug-resistant progressive myoclonus epilepsy. The cerebrospinal fluid level of glutamate was decreased while glutamine was increased. His younger brother manifested similar symptoms from 6 months of age. By exome sequencing of the proband we identified a novel homozygous frameshift variant in the potassium channel tetramerization domain 7 (KCTD7) gene (NM_153033.1:c.696delT: p.F232fs), which results in a truncated protein. The identified F232fs variant is inherited in an autosomal recessive manner, and the healthy consanguineous parents carry the variant in a heterozygous state. Bioinformatic analyses and structure modelling showed that KCTD7 is a highly conserved protein, structurally similar to KCTD5 and several voltage-gated potassium channels, and that it may form homo- or heteromultimers. By heterologous expression in Xenopus laevis oocytes, we demonstrate that wild-type KCTD7 hyperpolarizes cells in a K+ dependent manner and regulates activity of the neuronal glutamine transporter SAT2 (Slc38a2), while the F232fs variant impairs K+ fluxes and obliterates SAT2-dependent glutamine transport. Characterization of four additional disease-causing variants (R94W, R184C, N273I, Y276C) bolster these results and reveal the molecular mechanisms involved in the pathophysiology of KCTD7-related progressive myoclonus epilepsy. Thus, our data demonstrate that KCTD7 has an impact on K+ fluxes, neurotransmitter synthesis and neuronal function, and that malfunction of the encoded protein may lead to progressive myoclonus epilepsy.


Assuntos
Glutamina/metabolismo , Epilepsias Mioclônicas Progressivas/genética , Neurônios/metabolismo , Canais de Potássio/genética , Potássio/metabolismo , Sistema A de Transporte de Aminoácidos/metabolismo , Animais , Transporte Biológico , Pré-Escolar , Consanguinidade , Evolução Fatal , Humanos , Masculino , Oócitos , Linhagem , Arábia Saudita , Irmãos , Xenopus laevis
14.
Hum Mol Genet ; 24(20): 5836-44, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26220972

RESUMO

Mutations in the low-density lipoprotein receptor (LDLR) gene cause familial hypercholesterolemia (FH). The mechanism by which mutations in the LDLR affecting the transmembrane domain of the receptor cause FH has not been thoroughly investigated. In this study, we have selected 12 naturally occurring mutations affecting the transmembrane domain and studied their effect on the LDLR. The main strategy has been to transiently transfect HepG2 cells with mutant LDLR plasmids and to study the mutant LDLRs in cell lysates and in media by western blot analysis. The most striking finding was that mutation p.L799R led to secretion of the entire 160 kDa mature L799R-LDLR. Residue 799Leu is in the middle of the 22-residue transmembrane domain, and introduction of a basic residue in the hydrophobic core of the transmembrane domain could prevent L799R-LDLR from being correctly recognized and integrated in the membrane by the Sec61 translocon complex. This would then lead to translocation of the entire L799R-LDLR into the lumen of the endoplasmic reticulum. Mutation p.L799R should be considered a member of a separate class of FH-causing mutations that affects the insertion of the LDLR in the cell membrane.


Assuntos
Hiperlipoproteinemia Tipo II/genética , Mutação , Receptores de LDL/genética , Motivos de Aminoácidos , Membrana Celular/metabolismo , Células Hep G2 , Humanos , Hiperlipoproteinemia Tipo II/metabolismo , Receptores de LDL/química , Receptores de LDL/metabolismo , Alinhamento de Sequência , Transfecção
15.
Gut ; 64(12): 1889-97, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25367873

RESUMO

OBJECTIVE: IBD is a group of complex, systemic disorders associated with intestinal inflammation and extraintestinal manifestations. Recent studies revealed Mendelian forms of IBD, which contributed significantly to our understanding of disease pathogenesis and the heritability of IBD. DESIGN: We performed exome sequencing in a family with Crohn's disease (CD) and severe autoimmunity, analysed immune cell phenotype and function in affected and non-affected individuals, and performed in silico and in vitro analyses of cytotoxic T lymphocyte-associated protein 4 (CTLA-4) structure and function. RESULTS: A novel missense variant was identified in CTLA4 encoding CTLA-4, a coinhibitory protein expressed by T cells and required for regulation of T cell activation. The residue affected by the mutation, CTLA-4 Tyr60, is evolutionarily highly conserved, and the identified Y60C variant is predicted to affect protein folding and structural stability and demonstrated to cause impaired CTLA-4 dimerisation and CD80 binding. Intestinal inflammation and autoimmunity in carriers of CTLA-4 Y60C exhibit incomplete penetrance with a spectrum of clinical presentations ranging from asymptomatic carrier status to fatal autoimmunity and intestinal inflammation. In a clinically affected CTLA-4 Y60C carrier, T cell proliferation was increased in vitro and associated with an increased ratio of memory to naive T cells in vivo, consistent with impaired regulation of T cell activation. CONCLUSIONS: Our results support the concept that variants in CTLA4 provide the basis for a novel Mendelian form of early-onset CD associated with systemic autoimmunity. Incomplete penetrance of autoimmunity further indicates the presence of other genetic and/or environmental modifiers.


Assuntos
Doenças Autoimunes/genética , Autoimunidade/genética , Antígeno CTLA-4/genética , Doença de Crohn/genética , Doença de Crohn/imunologia , Linfócitos T Citotóxicos/metabolismo , Adolescente , Idade de Início , Doenças Autoimunes/imunologia , Antígeno B7-1/metabolismo , Contagem de Linfócito CD4 , Antígeno CTLA-4/metabolismo , Proliferação de Células/genética , Criança , Análise Mutacional de DNA , Diabetes Mellitus Tipo 1/complicações , Dimerização , Exoma , Feminino , Células HEK293 , Heterozigoto , Humanos , Memória Imunológica/genética , Mutação de Sentido Incorreto , Linhagem , Penetrância , Multimerização Proteica/genética , Análise de Sequência de DNA , Adulto Jovem
16.
FEBS Open Bio ; 4: 321-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24918045

RESUMO

More than 1700 mutations in the low density lipoprotein receptor (LDLR) gene have been found to cause familial hypercholesterolemia (FH). These are commonly divided into five classes based upon their effects on the structure and function of the LDLR. However, little is known about the mechanism by which mutations in the transmembrane domain of the LDLR gene cause FH. We have studied how the transmembrane mutation G805R affects the function of the LDLR. Based upon Western blot analyses of transfected HepG2 cells, mutation G805R reduced the amounts of the 120 kDa precursor LDLR in the endoplasmic reticulum. This led to reduced amounts of the mature 160 kDa LDLR at the cell surface. However, significant amounts of a secreted 140 kDa G805R-LDLR ectodomain fragment was observed in the culture media. Treatment of the cells with the metalloproteinase inhibitor batimastat largely restored the amounts of the 120 and 160 kDa forms in cell lysates, and prevented secretion of the 140 kDa ectodomain fragment. Together, these data indicate that a metalloproteinase cleaved the ectodomain of the 120 kDa precursor G805R-LDLR in the endoplasmic reticulum. It was the presence of the polar Arg805 and not the lack of Gly805 which led to ectodomain cleavage. Arg805 also prevented γ-secretase cleavage within the transmembrane domain. It is conceivable that introducing a charged residue within the hydrophobic membrane lipid bilayer, results in less efficient incorporation of the 120 kDa G805R-LDLR in the endoplasmic reticulum membrane and makes it a substrate for metalloproteinase cleavage.

17.
Microbiology (Reading) ; 160(Pt 1): 217-227, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24169816

RESUMO

RecG is a helicase that is conserved in nearly all bacterial species. The prototypical Escherichia coli RecG promotes regression of stalled replication forks, participates in DNA recombination and DNA repair, and prevents aberrant replication. Mycobacterium tuberculosis RecG (RecGMtb) is a DNA-dependent ATPase that unwinds a variety of DNA substrates, although its preferred substrate is a Holliday junction. Here, we performed site-directed mutagenesis of selected residues in the wedge domain and motifs Q, I, Ib and VI of RecGMtb. Three of the 10 substitution mutations engineered were detected previously as naturally occurring SNPs in the gene encoding RecGMtb. Alanine substitution mutations at residues Q292, F286, K321 and R627 abolished the RecGMtb unwinding activity, whilst RecGMtb F99A, P285S and T408A mutants exhibited ~25-50 % lower unwinding activity than WT. We also found that RecGMtb bound ATP in the absence of a DNA cofactor.


Assuntos
DNA Helicases/genética , DNA Helicases/metabolismo , Mutação de Sentido Incorreto , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Sequência de Aminoácidos , Análise Mutacional de DNA , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformação Proteica , Alinhamento de Sequência
18.
DNA Repair (Amst) ; 12(12): 1159-64, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23755964

RESUMO

Base excision repair is the major pathway for removal of oxidative DNA base damage. This pathway is initiated by DNA glycosylases, which recognize and excise damaged bases from DNA. In this work, we have purified the glycosylase domain (GD) of human DNA glycosylase NEIL3. The substrate specificity has been characterized and we have elucidated the catalytic mechanisms. GD NEIL3 excised the hydantoin lesions spiroiminodihydantoin (Sp) and guanidinohydantoin (Gh) in single-stranded (ss) and double-stranded (ds) DNA efficiently. NEIL3 also removed 5-hydroxy-2'-deoxycytidine (5OHC) and 5-hydroxy-2'-deoxyuridine (5OHU) in ssDNA, but less efficiently than hydantoins. Unlike NEIL1 and NEIL2, which possess a ß,δ-elimination activity, NEIL3 mainly incised damaged DNA by ß-elimination. Further, the base excision and strand incision activities of NEIL3 exhibited a non-concerted action, indicating that NEIL3 mainly operate as a monofunctional DNA glycosylase. The site-specific NEIL3 mutant V2P, however, showed a concerted action, suggesting that the N-terminal amino group in Val2 is critical for the monofunctional modus. Finally, we demonstrated that residue Lys81 is essential for catalysis.


Assuntos
DNA Glicosilases/metabolismo , DNA/metabolismo , Guanidinas/metabolismo , Guanosina/análogos & derivados , Hidantoínas/metabolismo , N-Glicosil Hidrolases/metabolismo , Compostos de Espiro/metabolismo , Domínio Catalítico , Quebras de DNA de Cadeia Dupla , Quebras de DNA de Cadeia Simples , DNA Glicosilases/química , Reparo do DNA , Guanosina/metabolismo , Humanos , Lisina/genética , Mutação , N-Glicosil Hidrolases/química , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
19.
J Struct Biol ; 183(1): 66-75, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23623903

RESUMO

The recently discovered HEAT-like repeat (HLR) DNA glycosylase superfamily is widely distributed in all domains of life. The present bioinformatics and phylogenetic analysis shows that HLR DNA glycosylase superfamily members in the genus Bacillus form three subfamilies: AlkC, AlkD and AlkF/AlkG. The crystal structure of AlkF shows structural similarity with the DNA glycosylases AlkC and AlkD, however neither AlkF nor AlkG display any DNA glycosylase activity. Instead, both proteins have affinity to branched DNA structures such as three-way and Holliday junctions. A unique ß-hairpin in the AlkF/AlkG subfamily is most likely inserted into the DNA major groove, and could be a structural determinant regulating DNA substrate affinity. We conclude that AlkF and AlkG represent a new family of HLR proteins with affinity for branched DNA structures.


Assuntos
Bacillus cereus/enzimologia , Proteínas de Bactérias/química , DNA Glicosilases/química , Sítios de Ligação , Cromatografia Líquida de Alta Pressão , Análise por Conglomerados , Escherichia coli/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Estrutura Terciária de Proteína
20.
PLoS One ; 8(4): e60935, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23593352

RESUMO

3',5'-cyclic adenosine monophosphate (cAMP) dependent protein kinase or protein kinase A (PKA) has served as a prototype for the large family of protein kinases that are crucially important for signal transduction in eukaryotic cells. The PKA catalytic subunits Cα and Cß, encoded by the two genes PRKACA and PRKACB, respectively, are among the best understood and characterized human kinases. Here we have studied the evolution of this gene family in chordates, arthropods, mollusks and other animals employing probabilistic methods and show that Cα and Cß arose by duplication of an ancestral PKA catalytic subunit in a common ancestor of vertebrates. The two genes have subsequently been duplicated in teleost fishes. The evolution of the PRKACG retroposon in simians was also investigated. Although the degree of sequence conservation in the PKA Cα/Cß kinase family is exceptionally high, a small set of signature residues defining Cα and Cß subfamilies were identified. These conserved residues might be important for functions that are unique to the Cα or Cß clades. This study also provides a good example of a seemingly simple phylogenetic problem which, due to a very high degree of sequence conservation and corresponding weak phylogenetic signals, combined with problematic nonphylogenetic signals, is nontrivial for state-of-the-art probabilistic phylogenetic methods.


Assuntos
Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Evolução Molecular , Sequência de Aminoácidos , Animais , Sequência de Bases , Teorema de Bayes , Cordados/genética , Sequência Conservada/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/química , Humanos , Dados de Sequência Molecular , Família Multigênica/genética , Filogenia , Estrutura Terciária de Proteína , Retroelementos/genética , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...