Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 26(4): 1944-1952, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31909849

RESUMO

Climate warming affects soil carbon (C) dynamics, with possible serious consequences for soil C stocks and atmospheric CO2 concentrations. However, the mechanisms underlying changes in soil C storage are not well understood, hampering long-term predictions of climate C-feedbacks. The activity of the extracellular enzymes ligninase and cellulase can be used to track changes in the predominant C sources of soil microbes and can thus provide mechanistic insights into soil C loss pathways. Here we show, using meta-analysis, that reductions in soil C stocks with warming are associated with increased ratios of ligninase to cellulase activity. Furthermore, whereas long-term (≥5 years) warming reduced the soil recalcitrant C pool by 14%, short-term warming had no significant effect. Together, these results suggest that warming stimulates microbial utilization of recalcitrant C pools, possibly exacerbating long-term climate-C feedbacks.

3.
Bioresour Technol ; 146: 282-287, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23941712

RESUMO

A rapid method is needed to assess biogas and methane yield potential of various kinds of substrate prior to anaerobic digestion. This study reports near infrared reflectance spectroscopy (NIRS) as a rapid alternative method to the conventional batch methods for prediction of specific biogas yield (SBY), specific methane yield (SMY) and kinetics of biogas yield (k-SBY) of reed canary grass (RCG) biomass. Dried and powdered RCG biomass with different level of maturity was used for biochemical composition analysis, batch assays and NIRS analysis. Calibration models were developed using partial least square (PLS) regression from NIRS spectra. The calibration models for SBY (R(2)=0.68, RPD=1.83) and k-SBY (R(2)=0.71, RPD=1.75) were better than the model for SMY (R(2)=0.53, RPD=1.49). Although the PLS model for SMY was less successful, the model performance was better compared to the models based on chemical composition.


Assuntos
Biocombustíveis , Phalaris/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Biomassa , Calibragem , Gases , Cinética , Análise dos Mínimos Quadrados , Lignina/química , Metano/química , Modelos Teóricos , Análise Multivariada , Reprodutibilidade dos Testes
4.
Bioresour Technol ; 130: 659-66, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23334024

RESUMO

This study examined the influence of harvest time on biomass yield, dry matter partitioning, biochemical composition and biological methane potential of reed canary grass harvested twice a month in one-cut (OC) management. The regrowth of biomass harvested in summer was also harvested in autumn as a two-cut management with (TC-F) or without (TC-U) fertilization after summer harvest. The specific methane yields decreased significantly with crop maturity that ranged from 384 to 315 and from 412 to 283 NL (normal litre) (kgVS)(-1) for leaf and stem, respectively. Approximately 45% more methane was produced by the TC-F management (5430Nm(3)ha(-1)) as by the OC management (3735Nm(3)ha(-1)). Specific methane yield was moderately correlated with the concentrations of fibre components in the biomass. Larger quantity of biogas produced at the beginning of the biogas assay from early harvested biomass was to some extent off-set by lower concentration of methane.


Assuntos
Biocombustíveis , Biomassa , Metano/metabolismo , Phalaris/metabolismo , Phalaris/química , Phalaris/crescimento & desenvolvimento , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA