Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36365872

RESUMO

Fiber Bragg gratings (FBGs) are point optical fiber sensors that allow the monitoring of a diversity of environmental parameters, e.g., temperature or strain. Several research groups have studied radiation effects on the grating response, as they are implemented in harsh environments: high energy physics, space, and nuclear facilities. We report here the advances made to date in studies regarding the vulnerability and hardening of this sensor under radiation. First, we introduce its principle of operation. Second, the different grating inscription techniques are briefly illustrated as well as the differences among the various types. Then, we focus on the radiation effects induced on different FBGs. Radiation induces a shift in their Bragg wavelengths, which is a property serving to measure environmental parameters. This radiation-induced Bragg wavelength shift (RI-BWS) leads to a measurement error, whose amplitude and kinetics depend on many parameters: inscription conditions, fiber type, pre- or post-treatments, and irradiation conditions (nature, dose, dose rate, and temperature). Indeed, the radiation hardness of an FBG is not directly related to that of the fiber where it has been photo-inscribed by a laser. We review the influence of all these parameters and discuss how it is possible to manufacture FBGs with limited RI-BWS, opening the way to their implementation in radiation-rich environments.

2.
Sensors (Basel) ; 21(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070806

RESUMO

Optical Frequency Domain Reflectometry (OFDR) is used to make temperature distributed sensing measurements along a fiber by exploiting Rayleigh backscattering. This technique presents high spatial and high temperature resolutions on temperature ranges of several hundred of degrees Celsius. With standard telecommunications fibers, measurement errors coming from the correlation between a high temperature Rayleigh trace and the one taken as a reference at room temperature could be present at extremely high temperatures. These correlation errors, due to low backscattering signal amplitude and unstable backscattering signal, induce temperature measurement errors. Thus, for high temperature measurement ranges and at extremely high temperatures (e.g., at 800 °C), a known solution is to use fibers with femtosecond laser inscribed nanograting. These fs-laser-insolated fibers have a high amplitude and thermally stable scattering signal, and they exhibit lower correlation errors. In this article, temperature sensing at 800 °C is reported by using an annealed zirconia-doped optical fiber with an initial 40.5-dB enhanced scattering signal. The zirconia-doped fiber presents initially OFDR losses of 2.8 dB/m and low OFDR signal drift at 800 °C. The ZrO2-doped fiber is an alternative to nanograting-inscribed fiber to make OFDR distributed fiber sensing on several meters with gauge lengths of 1 cm at high temperatures.

3.
J Acoust Soc Am ; 147(5): 3565, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32486807

RESUMO

In this paper, imaging results of defects in composite plates using guided wave-based algorithms, such as delay and sum and Excitelet, are presented. Those algorithms are applied to passive data for which the signal corresponding to each emitter-receiver couple is recovered as a result of the cross correlation of the ambient noise measured simultaneously by the two sensors. The transition to passive imaging allows the use of lighter sensors that are unable to emit ultrasonic waves, such as fiber Bragg gratings (FBGs) sensors on optical fibers, which are used in this study. The imaging results presented here show the feasibility of active and passive imaging in composite plates using FBGs as receivers, reducing the impact of the acquisition system on the structure in the context of structural health monitoring.

4.
J Acoust Soc Am ; 144(3): 1198, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30424667

RESUMO

Guided elastic waves are often studied as an effective solution for Structural Health Monitoring (SHM) systems of plate-like structures thanks to the capacity to propagate on large distances. In typical applications such as monitoring delaminations in aircraft fuselage, a network made of piezoelectric transducer (PZT) is used to emit and receive such waves in the structure. Fiber Bragg grating (FBG) sensors on optical fibers are a promising alternative to PZT for guided waves measurements in practical applications due to the capacity for dense multiplexing and robustness with respect to the environment. However, unlike conventional PZT transducers, FBG sensors cannot emit waves. It is demonstrated here that FBG sensors can be used in combination with a passive diffuse noise cross-correlation technique in order to extract the coherent guided waves propagating between two sensors. This could lead to a system using only FBG sensors in the near future. The reconstructed signals can then be analyzed with usual guided waves algorithms, like in active SHM systems, keeping all the advantages of this kind of monitoring in terms of fine diagnosis. The experimental demonstration shown in this paper is performed at ultrasonic frequencies (20-100 kHz) typically used in guided waves based SHM systems showing the potential of the approach.

5.
Sensors (Basel) ; 18(6)2018 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-29865238

RESUMO

The harsh environment associated with the next generation of nuclear reactors is a great challenge facing all new sensing technologies to be deployed for on-line monitoring purposes and for the implantation of SHM methods. Sensors able to resist sustained periods at very high temperatures continuously as is the case within sodium-cooled fast reactors require specific developments and evaluations. Among the diversity of optical fiber sensing technologies, temperature resistant fiber Bragg gratings are increasingly being considered for the instrumentation of future nuclear power plants, especially for components exposed to high temperature and high radiation levels. Research programs are supporting the developments of optical fiber sensors under mixed high temperature and radiative environments leading to significant increase in term of maturity. This paper details the development of temperature-resistant wavelength-multiplexed fiber Bragg gratings for temperature and strain measurements and their characterization for on-line monitoring into the liquid sodium used as a coolant for the next generation of fast reactors.

6.
Opt Express ; 26(9): 11775-11786, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29716096

RESUMO

This paper reports the testing results of radiation resistant fiber Bragg grating (FBG) in random air-line (RAL) fibers in comparison with FBGs in other radiation-hardened fibers. FBGs in RAL fibers were fabricated by 80 fs ultrafast laser pulse using a phase mask approach. The fiber Bragg gratings tests were carried out in the core region of a 6 MW MIT research reactor (MITR) at a steady temperature above 600°C and an average fast neutron (>1 MeV) flux >1.2 × 1014 n/cm2/s. Fifty five-day tests of FBG sensors showed less than 5 dB reduction in FBG peak strength after over 1 × 1020 n/cm2 of accumulated fast neutron dose. The radiation-induced compaction of FBG sensors produced less than 5.5 nm FBG wavelength shift toward shorter wavelength. To test temporal responses of FBG sensors, a number of reactor anomaly events were artificially created to abruptly change reactor power, temperature, and neutron flux over short periods of time. The thermal sensitivity and temporal responses of FBGs were determined at different accumulated doses of neutron flux. Results presented in this paper reveal that temperature-stable Type-II FBGs fabricated in radiation-hardened fibers can survive harsh in-pile conditions. Despite large parameter drift induced by strong nuclear radiation, further engineering and innovation on both optical fibers and fiber devices could lead to useful fiber sensors for various in-pile measurements to improve safety and efficiency of existing and next generation nuclear reactors.

7.
Opt Express ; 16(23): 19018-33, 2008 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-19581994

RESUMO

We demonstrate that the resonance wavelength of fiber Bragg gratings photowritten in the core of microstructured optical fibers can be efficiently stabilized versus temperature by inserting suitable refractive index materials with a negative thermal sensitivity into the holes. By these means, the effective index of the guided mode undergoes thermal variations which counterbalance the effect of the grating period thermal drift. The residual excursion of the resonance wavelength can be limited to less than +/- 10 pm over a 70 degrees C range of temperature into Microstructured Optical Fibers (MOFs) having realistic geometrical parameters, and using existing refractive index materials. Low cost passively stabilized reflectors with insertion loss lower than 0.3 dB can be realized by splicing single mode fibers at both ends of a short length of a filled MOF including the fiber Bragg grating.


Assuntos
Fibras Ópticas , Fotoquímica/métodos , Refratometria/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Temperatura
8.
Opt Express ; 16(23): 19049-62, 2008 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-19581997

RESUMO

We present a study aimed at developing a label-free optical fiber biosensor for detection and quantification of biomolecules in real-time. The biosensor based on a Tilted Fiber Bragg Grating (TFBG) transduces a binding event between the probe and target molecules into a change in the refractive index of the medium surrounding the fiber. This work describes the experimental results obtained with three methods for immobilizing biomolecular probes on a TFBG silica cladding surface. Bovine serum albumin (BSA) and anti-BSA are used to assess the performances of the TFBG based biosensor in each configuration.


Assuntos
Técnicas Biossensoriais/instrumentação , Imunoensaio/instrumentação , Refratometria/instrumentação , Soroalbumina Bovina/análise , Materiais Revestidos Biocompatíveis/química , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Coloração e Rotulagem
9.
Opt Lett ; 32(16): 2390-2, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17700795

RESUMO

We present a photosensitive three-hole microstructured optical fiber specifically designed to improve the refractive index sensitivity of a standard fiber Bragg grating (FBG) sensor photowritten in the suspended Ge-doped silica core. We describe the specific photowriting procedure used to realize gratings in such a fiber. We then determine their spectral sensitivity to the refractive index changes of material filling the holes surrounding the core. The sensitivity is compared with that of standard FBGs photowritten in a six-hole fiber with a larger core diameter. We demonstrate an improvement in the sensitivity by two orders of magnitude and reach a resolution of 3 x 10(-5) and 6 x 10(-6) around mean refractive index values of 1.33 and 1.40, respectively.

10.
Opt Express ; 14(22): 10359-70, 2006 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19529434

RESUMO

We report what we believe to be the first Tilted short-period Fiber Bragg Grating photowritten in a microstructured optical fiber for refractive index measurement. We investigate the spectral sensitivity of Tilted Fiber Bragg Grating to refractive index liquid inserted into the holes of a multimode microstructured fiber. We measure the wavelength shift of the first four modes experimentally observed when calibrated oils are inserted into the fiber holes, and thus we determine the refractive index resolution for each of these modes. Moreover, a cross comparison between experimental and simulation results of a modal analysis is performed. Two simulation tools are used, respectively based on the localized functions method and on a finite element method. All results are in very good agreement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...