Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Intensive Care Med ; : 8850666241251743, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711289

RESUMO

Purpose: Secondary opportunistic coinfections are a significant contributor to morbidity and mortality in intensive care unit (ICU) patients, but can be difficult to identify. Presently, new blood RNA biomarkers were tested in ICU patients to diagnose viral, bacterial, and biofilm coinfections. Methods: COVID-19 ICU patients had whole blood drawn in RNA preservative and stored at -80°C. Controls and subclinical infections were also studied. Droplet digital polymerase chain reaction (ddPCR) quantified 6 RNA biomarkers of host neutrophil activation to bacterial (DEFA1), biofilm (alkaline phosphatase [ALPL], IL8RB/CXCR2), and viral infections (IFI27, RSAD2). Viral titer in blood was measured by ddPCR for SARS-CoV2 (SCV2). Results: RNA biomarkers were elevated in ICU patients relative to controls. DEFA1 and ALPL RNA were significantly higher in severe versus incidental/moderate cases. SOFA score was correlated with white blood cell count (0.42), platelet count (-0.41), creatinine (0.38), and lactate dehydrogenase (0.31). ALPL RNA (0.59) showed the best correlation with SOFA score. IFI27 (0.52) and RSAD2 (0.38) were positively correlated with SCV2 viral titer. Overall, 57.8% of COVID-19 patients had a positive RNA biomarker for bacterial or biofilm infection. Conclusions: RNA biomarkers of host neutrophil activation indicate the presence of bacterial and biofilm coinfections in most COVID-19 patients. Recognizing coinfections may help to guide the treatment of ICU patients.

2.
medRxiv ; 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37066219

RESUMO

Individuals with weaker neutralizing responses show reduced protection with SARS-CoV-2 variants. Booster vaccines are recommended for vaccinated individuals, but the uptake is low. We present the feasibility of utilizing point-of-care tests (POCT) to support evidence-based decision-making around COVID-19 booster vaccinations. Using infectious virus neutralization, ACE2 blocking, spike binding, and TCR sequencing assays, we investigated the dynamics of changes in the breadth and depth of blood and salivary antibodies as well as T-cell clonal response following mRNA vaccination in a cohort of healthcare providers. We evaluated the accuracy of two POCTs utilizing either blood or saliva to identify those in whom humoral immunity was inadequate. >4 months after two doses of mRNA vaccine, SARS-CoV-2 binding and neutralizing Abs (nAbs) and T-cell clones declined 40-80%, and 2/3rd lacked Omicron nAbs. After the third mRNA booster, binding and neutralizing Abs increased overall in the systemic compartment; notably, individuals with previously weak nAbs gained sharply. The third dose failed to stimulate secretory IgA, but salivary IgG closely tracked systemic IgG levels. Vaccine boosting increased Ab breadth against a divergent bat sarbecovirus, SHC014, although the TCR-beta sequence breadth was unchanged. Post 3rd booster dose, Ab avidity increased for the Wuhan and Delta strains, while avidity against Omicron and SHC014 increased to levels seen for Wuhan after the second dose. Negative results on POCTs strongly correlated with a lack of functional humoral immunity. The third booster dose helps vaccinees gain depth and breadth of systemic Abs against evolving SARS-CoV-2 and related viruses. Our findings show that POCTs are useful and easy-to-access tools to inform inadequate humoral immunity accurately. POCTs designed to match the circulating variants can help individuals with booster vaccine decisions and could serve as a population-level screening platform to preserve herd immunity. One Sentence Summary: SARS-CoV-2 point-of-care antibody tests are valuable and easy-to-access tools to inform inadequate humoral immunity and to support informed decision-making regarding the current and future booster vaccination.

3.
Cell Rep ; 38(5): 110336, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35090596

RESUMO

Understanding vaccine-mediated protection against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is critical to overcoming the global coronavirus disease 2019 (COVID-19) pandemic. We investigate mRNA-vaccine-induced antibody responses against the reference strain, seven variants, and seasonal coronaviruses in 168 healthy individuals at three time points: before vaccination, after the first dose, and after the second dose. Following complete vaccination, both naive and previously infected individuals developed comparably robust SARS-CoV-2 spike antibodies and variable levels of cross-reactive antibodies to seasonal coronaviruses. However, the strength and frequency of SARS-CoV-2 neutralizing antibodies in naive individuals were lower than in previously infected individuals. After the first vaccine dose, one-third of previously infected individuals lacked neutralizing antibodies; this was improved to one-fifth after the second dose. In all individuals, neutralizing antibody responses against the Alpha and Delta variants were weaker than against the reference strain. Our findings support future tailored vaccination strategies against emerging SARS-CoV-2 variants as mRNA-vaccine-induced neutralizing antibodies are highly variable among individuals.


Assuntos
Anticorpos Neutralizantes/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Reações Cruzadas , Imunoglobulina G/imunologia , SARS-CoV-2/imunologia , Anticorpos Antivirais/imunologia , Formação de Anticorpos , COVID-19/prevenção & controle , Vacinas contra COVID-19/administração & dosagem , Coronavirus/imunologia , Humanos , Mutação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Vacinas de mRNA/administração & dosagem , Vacinas de mRNA/imunologia
4.
World J Microbiol Biotechnol ; 31(2): 353-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25526959

RESUMO

The study of environmental biofilms is complicated by the difficulty of working with them under lab conditions. Nonetheless, knowledge of cellular activity and interactions within environmental biofilms could lead to novel biomedical applications. To address this problem we previously proposed a new technique for inducing resistance to Staphylococcus aureus in an intact environmental biofilm. In the current follow-up study we applied the new technique in a biogeographically distinct environment using a different strain of S. aureus. The proposed technique for inducing resistance to S. aureus in an environmental biofilm involves growing the environmental biofilms over several days in media reflecting their natural habitat on agar that contains spent culture supernatant from S. aureus over-night culture. We found in this second study that it was possible to induce resistance to S. aureus in an environmental biofilm from a biogeographically distinct environment, though not in the same way as we had previously observed. Environmental consortia from Sydney Harbor, Australia display an ability to inhibit biofilm formation by S. aureus; only in the case where the environmental biofilms were pretreated with UV radiation was there a difference in activity between environmental consortia grown on plain agar, and that grown on S. aureus agar. Application of the new technique in the current study also differs in that significant killing of cells within an established S. aureus biofilm by environmental consortia grown on S. aureus agar was possible.


Assuntos
Biofilmes/crescimento & desenvolvimento , Técnicas Microbiológicas/métodos , Staphylococcus aureus/crescimento & desenvolvimento , Ágar/química , Austrália , Biofilmes/efeitos da radiação , Meios de Cultura/química , Meios de Cultura/efeitos da radiação , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...