Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 8(4): 1462-1470, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37067504

RESUMO

We present a novel method for the quantitative analysis of mixtures of semivolatile chemical compounds. For the first time, thermal desorption is integrated directly with nanoelectromechanical infrared spectroscopy (NEMS-IR-TD). In this new technique, an analyte mixture is deposited via nebulization on the surface of a NEMS sensor and subsequently desorbed using heating under vacuum. The desorption process is monitored in situ via infrared spectroscopy and thermogravimetric analysis. The resulting spectro-temporal maps allow for selective identification and analysis of the mixture. In addition, the corresponding thermogravimetric data allow for analysis of the desorption dynamics of the mixture components. As a demonstration, caffeine and theobromine were selectively identified and quantified from a mixture with a detection limit of less than 6 pg (about 30 fmol). With its exceptional sensitivity, NEMS-IR-TD allows for the analysis of low abundance and complex analytes with potential applications ranging from environmental sensing to life sciences.


Assuntos
Espectrofotometria Infravermelho
2.
Methods Mol Biol ; 1771: 171-182, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29633213

RESUMO

In many biochip applications, it is advantageous to be able to immobilize biomolecules at specific locations on the surface of solid supports. In this protocol, we describe a photochemical surface patterning procedure based on thiol-ene/yne photochemistry which allows for the simple and rapid selective patterning of biomolecules on thiol-ene solid supports. We describe the preparation of solid supports which are required for the immobilization, including porous monoliths, as well as two different immobilization schemes based on biotin-streptavidin interactions and covalent linkage via free amino groups respectively.


Assuntos
Dispositivos Lab-On-A-Chip , Análise em Microsséries/métodos , Fotoquímica/métodos , Análise em Microsséries/instrumentação , Microfluídica/instrumentação , Microfluídica/métodos , Fotoquímica/instrumentação , Polímeros , Compostos de Sulfidrila
3.
Analyst ; 143(5): 1077-1086, 2018 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-29383369

RESUMO

A microfluidic microreactor for trypsin mediated transthyretin (TTR) digestion has been developed as a step towards the elaboration of a fully integrated microdevice for the detection of a rare and disabling disease, the familial transthyretin amyloidosis (ATTR) which is related to specific TTR mutations. Therefore, an enzymatic microreactor coupled to an analytical step able to monitor the mutation of TTR on specific peptide fragments would allow an accurate monitoring of the treatment efficiency of ATTR. In this study, two types of immobilized trypsin microreactors have been investigated: a new miniaturized, microfluidic fluidized bed packed with trypsin functionalized magnetic particles (MPs), and a thiol-ene (TE) monolith-based chip. Their performances were first demonstrated with N-benzoyl-dl-arginine-4-nitroanilide hydrochloride BApNA, a low molecular weight substrate. High reaction yields (75.2%) have been reached within 0.6 min for the TE-based trypsin microreactor, while a lower yield (12.4%) was obtained for the micro-fluidized bed within a similar residence time. Transposition of the optimized conditions, developed with BApNA, to TTR digestion in the TE-based trypsin microreactor was successfully performed. We demonstrated that the TE-chip can achieve an efficient and reproducible digestion of TTR. This has been assessed by MS detection. In addition, TTR hydrolysis led to the production of a fragment of interest allowing the therapeutic follow-up of more than twenty possible ATTR mutations. High sequence coverage (90%), similar to those obtained with free trypsin, was achieved in a short time (2.4 min). Repeated experiments showed good reproducibility (RSD = 6.8%). These promising results open up the route for an innovative treatment follow-up dedicated to ATTR.


Assuntos
Neuropatias Amiloides Familiares/diagnóstico , Técnicas Analíticas Microfluídicas/instrumentação , Pré-Albumina/análise , Humanos , Reprodutibilidade dos Testes
4.
Anal Chem ; 89(8): 4573-4580, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28322047

RESUMO

To improve the sample handling, and reduce cost and preparation time, of peptide mapping LC-MS workflows in protein analytical research, we here investigate the possibility of replacing conventional enzymatic digestion methods with a polymer microfluidic chip based enzyme reactor. Off-stoichiometric thiol-ene is utilized as both bulk material and as a monolithic stationary phase for immobilization of the proteolytic enzyme pepsin. The digestion efficiency of the, thiol-ene based, immobilized enzyme reactor (IMER) is compared to that of a conventional, agarose packed bed, pepsin IMER column commonly used in LC-MS based protein analyses. The chip IMER is found to rival the conventional column in terms of digestion efficiency at comparable residence time and, using a 3D-printed interface, be directly interfaceable with LC-MS.


Assuntos
Pepsina A/metabolismo , Mapeamento de Peptídeos/métodos , Peptídeos/análise , Impressão Tridimensional , Compostos de Sulfidrila/química , Animais , Cromatografia Líquida de Alta Pressão , Enzimas Imobilizadas , Hemoglobinas/metabolismo , Humanos , Dispositivos Lab-On-A-Chip , Espectrometria de Massas , Pepsina A/química , Mapeamento de Peptídeos/instrumentação , Peptídeos/metabolismo , Polímeros/química
5.
J Phys Chem Lett ; 8(1): 73-79, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27936765

RESUMO

A microfluidic platform combined with synchrotron small-angle X-ray scattering (SAXS) was used for monitoring the continuous production of multilamellar vesicles (MLVs). Their production was fast and started to evolve within less than 0.43 s of contact between the lipids and the aqueous phase. To obtain nanoparticles with a narrow size distribution, it was important to use a modified hydrodynamic flow focusing (HFF) microfluidic device with narrower microchannels than those normally used for SAXS experiments. Monodispersed MLVs as small as 160 nm in size, with a polydispersity index (PDI) of approximately 0.15 were achieved. The nanoparticles produced were smaller and had a narrower size distribution than those obtained via conventional bulk mixing methods. This microfluidic platform therefore has a great potential for the continuous production of monodispersed NPs.

6.
Lab Chip ; 16(22): 4263-4295, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27731448

RESUMO

The increasingly narrow and brilliant beams at X-ray facilities reduce the requirements for both sample volume and data acquisition time. This creates new possibilities for the types and number of sample conditions that can be examined but simultaneously increases the demands in terms of sample preparation. Microfluidic-based sample preparation techniques have emerged as elegant alternatives that can be integrated directly into the experimental X-ray setup remedying several shortcomings of more traditional methods. We review the use of microfluidic devices in conjunction with X-ray measurements at synchrotron facilities in the context of 1) mapping large parameter spaces, 2) performing time resolved studies of mixing-induced kinetics, and 3) manipulating/processing samples in ways which are more demanding or not accessible on the macroscale. The review covers the past 15 years and focuses on applications where synchrotron data collection is performed in situ, i.e. directly on the microfluidic platform or on a sample jet from the microfluidic device. Considerations such as the choice of materials and microfluidic designs are addressed. The combination of microfluidic devices and measurements at large scale X-ray facilities is still emerging and far from mature, but it definitely offers an exciting array of new possibilities.


Assuntos
Disciplinas das Ciências Biológicas/instrumentação , Dispositivos Lab-On-A-Chip , Cristalografia por Raios X , Espalhamento a Baixo Ângulo , Raios X
7.
Biosens Bioelectron ; 76: 213-33, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26318580

RESUMO

The marriage of highly sensitive biosensor designs with the versatility in sample handling and fluidic manipulation offered by lab-on-a-chip systems promises to yield powerful tools for analytical and, in particular, diagnostic applications. The field where these two technologies meet is rapidly and almost violently developing. Yet, solutions where the full potentials are being exploited are still surprisingly rare. In the context of this review, sensor designs are often fairly advanced, whereas the lab-on-a-chip aspect is still rather simplistic in many cases, albeit already offering significant improvements to existing methods. Recent examples, showing a staggering variety of lab-on-a-chip systems for biosensing applications, are presented, tabularized for overview, and briefly discussed.


Assuntos
Técnicas Biossensoriais , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/métodos , Humanos , Análise de Sequência com Séries de Oligonucleotídeos/métodos
8.
Lab Chip ; 15(10): 2162-72, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25850955

RESUMO

A novel, rapid and simple method for the preparation of emulsion-templated monoliths in microfluidic channels based on thiol-ene chemistry is presented. The method allows monolith synthesis and anchoring inside thiol-ene microchannels in a single photoinitiated step. Characterization by scanning electron microscopy showed that the methanol-based emulsion templating process resulted in a network of highly interconnected and regular thiol-ene beads anchored solidly inside thiol-ene microchannels. Surface area measurements indicate that the monoliths are macroporous, with no or little micro- or mesopores. As a demonstration, galactose oxidase and peptide-N-glycosidase F (PNGase F) were immobilized at the surface of the synthesized thiol-ene monoliths via two different mechanisms. First, cysteine groups on the protein surface were used for reversible covalent linkage to free thiol functional groups on the monoliths. Second, covalent linkage was achieved via free primary amino groups on the protein surface by means of thiol-ene click chemistry and l-ascorbic acid linkage. Thus prepared galactose oxidase and PNGase F microreactors demonstrated good enzymatic activity in a galactose assay and the deglycosilation of ribonuclease B, respectively.


Assuntos
Ascomicetos/enzimologia , Proteínas Fúngicas/química , Galactose/química , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/química , Ribonucleases/química , Emulsões/química
9.
Electrophoresis ; 35(2-3): 282-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23983194

RESUMO

Thiol-ene polymers possess physical, optical, and chemical characteristics that make them ideal substrates for the fabrication of optofluidic devices. In this work, thiol-ene polymers are used to simultaneously create microfluidic channels and optical waveguides in one simple moulding step. The reactive functional groups present at the surface of the thiol-ene polymer are subsequently used for the rapid, one step, site-specific functionalization of the waveguide with biological recognition molecules. It was found that while the bulk properties and chemical surface properties of thiol-ene materials vary considerably with variations in stoichiometric composition, their optical properties remain mostly unchanged with an average refractive index value of 1.566 ± 0.008 for thiol-ene substrates encompassing a range from 150% excess ene to 90% excess thiol. Microfluidic chips featuring thiol-ene waveguides were fabricated from 40% excess thiol thiol-ene to ensure the presence of thiol functional groups at the surface of the waveguide. Biotin alkyne was photografted at specific locations using a photomask, directly at the interface between the microfluidic channel and the thiol-ene waveguide prior to conjugation with fluorescently labeled streptavidin. Fluorescence excitation was achieved by launching light through the thiol-ene waveguide, revealing bright fluorescent patterns along the channel/waveguide interface.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Polímeros/química , Espectrometria de Fluorescência/instrumentação , Compostos de Sulfidrila/química , Refratometria , Propriedades de Superfície
10.
Analyst ; 138(3): 845-9, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23193537

RESUMO

The suitable optical properties of thiol-ene polymers combined with the ease of modifying their surface for the attachment of recognition molecules make them ideal candidates in many biochip applications. This paper reports the rapid one-step photochemical surface patterning of biomolecules in microfluidic thiol-ene chips. This work focuses on thiol-ene substrates featuring an excess of thiol groups at their surface. The thiol-ene stoichiometric composition can be varied to precisely control the number of surface thiol groups available for surface modification up to an average surface density of 136 ± 17 SH nm(-2). Biotin alkyne was patterned directly inside thiol-ene microchannels prior to conjugation with fluorescently labelled streptavidin. The surface bound conjugates were detected by evanescent wave-induced fluorescence (EWIF), demonstrating the success of the grafting procedure and its potential for biochip applications.


Assuntos
Alcinos/química , Biotina/química , Espectrometria de Fluorescência , Compostos de Sulfidrila/química , Corantes Fluorescentes/química , Técnicas Analíticas Microfluídicas , Polímeros/química , Espectrometria de Fluorescência/instrumentação , Estreptavidina/química , Propriedades de Superfície
11.
Lab Chip ; 12(22): 4651-6, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-22824920

RESUMO

Conventional methods of environmental analysis can be significantly improved by the development of portable microscale technologies for direct in-field sensing at remote locations. This report demonstrates the vast potential of gold nanoparticle-based microfluidic sensors for the rapid, in-field, detection of two important classes of environmental contaminants - heavy metals and pesticides. Using gold nanoparticle-based microfluidic sensors linked to a simple digital camera as the detector, detection limits as low as 0.6 µg L(-1) and 16 µg L(-1) could be obtained for the heavy metal mercury and the dithiocarbamate pesticide ziram, respectively. These results demonstrate that the attractive optical properties of gold nanoparticle probes combine synergistically with the inherent qualities of microfluidic platforms to offer simple, portable and sensitive sensors for environmental contaminants.


Assuntos
Técnicas de Química Analítica/instrumentação , Poluentes Ambientais/análise , Ouro/química , Nanopartículas Metálicas/química , Técnicas Analíticas Microfluídicas/métodos , Fenômenos Ópticos , Animais , Bovinos , Poluentes Ambientais/química , Mercúrio/análise , Mercúrio/química , Espectrometria de Fluorescência , Ziram/análise , Ziram/química
12.
Talanta ; 81(1-2): 722-6, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20188988

RESUMO

Great variations in pollutant concentrations are observed in the environment and pre-concentration is often required to detect trace contaminants in water samples. This paper presents a novel solid phase-extraction device integrated onto a centrifugal microfluidic platform for rapid on-site pre-concentration and screening of organic contaminants in aqueous samples. In-column fluorescence and absorbance measurements are obtained directly from an analyte trapped on the top of a solid phase extraction microcolumn. Results are presented for the representative fluorophore fluorescein and the polycyclic aromatic hydrocarbon anthracene. An absolute detection limit of 20 ng was obtained for anthracene using a simple light emitting diode for fluorescence excitation. One of the main advantages of this device is that only a simple motor is needed to induce liquid flow, making simultaneous on-site extraction and measurement of multiple samples easy while minimizing sample losses and contamination.

13.
Anal Chem ; 80(17): 6821-3, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18681457

RESUMO

It is of considerable importance to be able to distinguish metallic species because their toxicity depends on their chemical form. Therefore, the analysis of environmental samples can be enhanced by the combination of high-performance thin-layer chromatography (HPTLC) with laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). In this study, Cr (3+) and Cr (6+) were separated on silica gel HPTLC plates using aqueous mobile phases. Separation was achieved in seconds with retardation factors ( R f ) of 0 and 1 for Cr (3+) and Cr (6+), respectively. LA was used to volatilize the chromium species directly from the chromatographic material prior to ICPMS detection. A linear calibration was obtained, and detection limits (3sigma) of 6 ng for Cr (6+) and 0.4 ng for Cr (3+) were achieved with precision ranging from 3 to 40% at the 95% confidence level. The silicon present in the stationary phase was used as an internal standard. This procedure allows for a rapid separation and quantification, requires only 0.5 muL of sample, and lower detection limits can be achieved through preconcentration.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Cromatografia em Camada Fina/métodos , Cromo/análise , Lasers , Espectrometria de Massas/métodos , Calibragem , Cromo/química , Modelos Lineares , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...