Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Antimicrob Chemother ; 77(12): 3414-3420, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36177825

RESUMO

INTRODUCTION: There are limited oral antimicrobial options for the treatment of urinary infections caused by ESBL-producing and MDR Enterobacterales. Sulopenem is an investigational thiopenem antimicrobial that is being developed as both an oral and IV formulation. The purpose of this study was to evaluate the in vitro activity of sulopenem versus bacterial pathogens recovered from the urine of patients admitted to or assessed at hospitals across Canada (CANWARD). MATERIALS AND METHODS: The in vitro activity of sulopenem and clinically relevant comparators was determined for 1880 Gram-negative and Gram-positive urinary isolates obtained as part of the CANWARD study (2014 to 2021) using the CLSI broth microdilution method. RESULTS: Sulopenem demonstrated excellent in vitro activity versus members of the Enterobacterales, with MIC90 values ranging from 0.06 to 0.5 mg/L for all species tested. Over 90% of ESBL-producing, AmpC-producing and MDR (not susceptible to ≥1 antimicrobial from ≥3 classes) Escherichia coli were inhibited by ≤0.25 mg/L of sulopenem. Sulopenem had an identical MIC90 to meropenem for ESBL-producing and MDR E. coli. The MIC90 of sulopenem and meropenem versus MSSA was 0.25 mg/L. Sulopenem was not active in vitro versus Pseudomonas aeruginosa (similar to ertapenem), and it demonstrated poor activity versus Enterococcus faecalis (similar to meropenem). CONCLUSIONS: Sulopenem demonstrated excellent in vitro activity versus bacterial pathogens recovered from the urine of Canadian patients. These data suggest that sulopenem may have a role in the treatment of urinary infections caused by antimicrobial-resistant Enterobacterales, but additional clinical studies are required.


Assuntos
Escherichia coli , Infecções Urinárias , Humanos , Testes de Sensibilidade Microbiana , Meropeném , Canadá , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
2.
J Antimicrob Chemother ; 77(11): 3035-3038, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-35971759

RESUMO

BACKGROUND: Multiple susceptible breakpoints are published to interpret fosfomycin MICs: ≤64 mg/L for Escherichia coli and Enterococcus faecalis grown from urine (CLSI M100); ≤32 mg/L for Enterobacterales and staphylococci when parenteral fosfomycin is prescribed (EUCAST); and ≤8 mg/L for uncomplicated urinary tract infection with E. coli when oral fosfomycin is used (EUCAST). Clinical laboratories are frequently requested to test fosfomycin against antimicrobial-resistant urinary isolates not included in standard documents. METHODS: The in vitro activity of fosfomycin was determined using the CLSI agar dilution method for a 2007-20 collection of clinically significant Gram-negative (3656 Enterobacterales; 140 Pseudomonas aeruginosa) and Gram-positive (346 E. faecalis; 94 Staphylococcus aureus) urinary isolates from the CANWARD surveillance study. Comparator agents were tested using CLSI broth microdilution. RESULTS: Using the CLSI MIC breakpoint (≤64 mg/L), 99.2% of E. coli (n = 2871; MIC90, 4 mg/L), including 96.7% of ESBL-positive isolates, were fosfomycin susceptible. Similarly, 95.8% of E. coli, including 95.2% of ESBL-positive isolates, were fosfomycin susceptible at ≤8 mg/L (EUCAST oral susceptible MIC breakpoint). All other species of Enterobacterales (except Citrobacter freundii) and P. aeruginosa had higher fosfomycin MICs (MIC90s, 64 to >512 mg/L) than E. coli. Using published breakpoints, 88.4% of E. faecalis (MIC ≤64 mg/L) and 97.9% of S. aureus (MIC ≤32 mg/L) isolates were fosfomycin susceptible. CONCLUSIONS: Fosfomycin demonstrated in vitro activity against frequently encountered Gram-positive and Gram-negative urinary pathogens; however, the extrapolation of current CLSI and EUCAST MIC breakpoints to pathogens not specified by standard methods requires further study and is currently not recommended.


Assuntos
Fosfomicina , Fosfomicina/farmacologia , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa
3.
Microbiol Spectr ; 10(4): e0172422, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35758747

RESUMO

Cefiderocol was evaluated by broth microdilution versus 1,050 highly antimicrobial-resistant Pseudomonas aeruginosa clinical isolates from the CANWARD study (2007 to 2019). Overall, 98.3% of isolates remained cefiderocol susceptible (MIC, ≤4 µg/mL), including 97.4% of extensively drug-resistant (XDR) (n = 235) and 97.9% of multidrug-resistant (MDR) (n = 771) isolates. Most isolates testing not susceptible to ceftolozane-tazobactam, ceftazidime-avibactam, and imipenem-relebactam remained susceptible to cefiderocol. In vitro data suggest that cefiderocol may be a treatment option for infections caused by MDR and XDR P. aeruginosa. IMPORTANCE After testing cefiderocol against a large collection of clinical isolates of highly antimicrobial-resistant Pseudomonas aeruginosa, we report that cefiderocol is active versus 97.4% of extensively drug-resistant (XDR) and 97.9% of multidrug-resistant (MDR) (n = 771) isolates. These data show that cefiderocol may be a treatment option for infections caused by MDR and XDR P. aeruginosa.


Assuntos
Anti-Infecciosos , Infecções por Pseudomonas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/uso terapêutico , Cefalosporinas/farmacologia , Cefalosporinas/uso terapêutico , Farmacorresistência Bacteriana Múltipla , Humanos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa , Cefiderocol
4.
JAC Antimicrob Resist ; 4(1): dlab197, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35156028

RESUMO

OBJECTIVES: This study assessed in vitro activities of cefepime/taniborbactam and comparator antimicrobial agents against ertapenem-non-susceptible Enterobacterales (ENSE) clinical isolates collected from the CANWARD study 2007-19, and associations between MIC and various mechanisms of ß-lactam resistance identified using WGS. METHODS: A total of 179 ENSE (MIC ≥ 1 mg/L) isolates underwent susceptibility testing using reference CLSI broth microdilution. WGS was performed using the Illumina NextSeq platform. Carbapenemases, ESBLs and other ß-lactamases were identified using ResFinder 4.0. Alterations in ompC/F and ftsI (PBP3) were identified by comparing extracted sequences to the appropriate NCBI reference gene. Porin alterations were analysed with Provean v1.1.3. Specific alterations of interest in PBP3 included a YRIN or YRIK insertion after P333. RESULTS: Cefepime/taniborbactam was highly active (MIC50/MIC90, 0.5/2 mg/L; 177/179 isolates inhibited at ≤ 8 mg/L) against ENSE with various antimicrobial resistance phenotypes. Thirteen (7.3%) of the 179 ENSE isolates demonstrated cefepime/taniborbactam MIC values ≥ 4 mg/L and possessed combinations of ß-lactam resistance mechanisms, including a carbapenemase and/or ESBL and/or other ß-lactamase genes, as well as alterations in OmpC and/or OmpF and/or PBP3. Of the two Escherichia coli isolates that demonstrated a cefepime/taniborbactam MIC of 32 mg/L, one possessed NDM-5, OXA-181 and TEM-1B, an OmpC alteration and P333_Y334insYRIN in PBP3, while the second contained CTX-M-71, a truncated OmpF and a large alteration in OmpC (F182_R195delinsMTTNGRDDVFE). CONCLUSIONS: Cefepime/taniborbactam was highly active against ENSE with various antimicrobial resistance phenotypes/genotypes. ENSE isolates with cefepime/taniborbactam MIC values ≥ 4 mg/L possessed combinations of ß-lactam resistance mechanisms, including ß-lactamase genes, as well as alterations in OmpC and/or OmpF and/or PBP3.

5.
J Clin Microbiol ; 59(12): e0163521, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34495708

RESUMO

Clinical isolates of Enterobacterales other than Escherichia coli (EOTEC), nonfermenting Gram-negative bacilli, and Gram-positive cocci were tested for susceptibility to fosfomycin using Etest and reference agar dilution. Applying EUCAST (v. 11.0, 2021) intravenous fosfomycin breakpoints, Etest MICs for EOTEC showed essential agreement (EA), categorical agreement (CA), major error (ME), and very major error (VME) rates of 70.4%, 88.4%, 4.1%, and 32.1%, respectively. No species of EOTEC tested with acceptable rates for all of EA (≥90%), CA (≥90%), ME (≤3%), and VME (≤3%). Etest MICs for Enterococcus faecalis, interpreted using CLSI oral/urine criteria (M100, 2021) showed EA, CA, minor error, ME, and VME rates of 98.5%, 81.2%, 18.8%, 0%, and 0%. Against Staphylococcus aureus, EA, CA, and ME rates were 84.1%, 98.7%, and 1.3% (EUCAST intravenous criteria). S. aureus isolates with fosfomycin MICs of >32 µg/ml (resistant) were not identified by agar dilution. We conclude that performing fosfomycin Etest on isolates of S. aureus will reliably identify fosfomycin-susceptible isolates with low, acceptable rates of MEs and VMEs. Testing of urinary isolates of E. faecalis by Etest is associated with an unacceptably high rate of minor errors (18.8%) but low, acceptable rates of MEs and VMEs when results are interpreted using CLSI criteria. Isolates of EOTEC tested by Etest with resulting MICs interpreted by EUCAST criteria were associated with an unacceptably high VME rate (32.1%). In vitro testing of clinical isolates beyond E. coli, E. faecalis, and S. aureus to determine susceptibility to fosfomycin is problematic with current methods and breakpoints.


Assuntos
Fosfomicina , Cocos Gram-Positivos , Antibacterianos/farmacologia , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Escherichia coli , Fosfomicina/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Staphylococcus aureus
6.
J Antimicrob Chemother ; 76(7): 1808-1814, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33792700

RESUMO

BACKGROUND: Current antimicrobial susceptibility/resistance data versus skin and soft tissue infection (SSTI) pathogens help to guide empirical treatment using topical antimicrobials. OBJECTIVES: To assess the in vitro activity and resistance rates of fusidic acid, mupirocin, ozenoxacin and comparator agents against pathogens isolated from patients with SSTIs in Canada. METHODS: SSTI isolates of MSSA (n = 422), MRSA (n = 283) and Streptococcus pyogenes (n = 46) obtained from CANWARD 2007-18 were tested using CLSI broth microdilution. Fusidic acid low-level resistance was defined as an MIC of ≥2 mg/L and high-level resistance as an MIC ≥512 mg/L. Mupirocin high-level resistance was defined as an MIC ≥512 mg/L and low-level resistance was an MIC of 2-256 mg/L. RESULTS: Low-level and high-level fusidic acid resistance in MSSA was 10.9% and 1.7%, respectively. Low-level and high-level fusidic acid resistance in MRSA was 10.6% and 3.5%, respectively. High-level mupirocin resistance was identified in 1.4% of MSSA and 14.1% of MRSA, respectively. Versus MSSA, ozenoxacin demonstrated MIC50 and MIC90 of 0.004 and 0.25 mg/L, respectively. Against MRSA, ozenoxacin inhibited all isolates at an MIC of ≤0.5 mg/L, including isolates with ciprofloxacin MICs >2 mg/L, clarithromycin-resistant, clindamycin-resistant, high-level fusidic acid-resistant and high-level mupirocin-resistant isolates. CONCLUSIONS: We conclude that fusidic acid low-level resistance exceeded 10% for both MSSA and MRSA while fusidic acid high-level resistance was ≤3.5%. Mupirocin high-level resistance exceeded 10% in MRSA. Ozenoxacin is active versus SSTI pathogens including MRSA resistant to fluoroquinolones, macrolides, clindamycin, fusidic acid and mupirocin.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções dos Tecidos Moles , Infecções Estafilocócicas , Aminopiridinas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Canadá , Ácido Fusídico/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Mupirocina/farmacologia , Quinolonas , Infecções dos Tecidos Moles/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus
7.
J Clin Microbiol ; 58(10)2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32817224

RESUMO

Clinical isolates of Escherichia coli (n = 554) were tested against fosfomycin using agar dilution, disk diffusion, and Etest. Agar dilution (reference method) identified few isolates with fosfomycin MICs of 64 (n = 3), 128 (n = 4), and ≥256 µg/ml (n = 2). Applying CLSI (M100, 2020) and EUCAST (v. 10.0, 2020) breakpoints, 98.9% and 98.4% (agar dilution), 99.3% and 99.1% (disk diffusion), and 99.1% and 98.9% (Etest) of isolates were fosfomycin susceptible, respectively. Essential agreement (agar dilution versus Etest) was low (40.8%); 59.3% (131/221) of isolates with agar dilution MICs of 2 to 128 µg/ml tested 2 to 4 doubling dilutions lower by Etest. Applying CLSI breakpoints, categorical agreement was >99% for both disk diffusion and Etest; no major errors (MEs) or very major errors (VMEs) were identified, and rates of minor errors (mEs) were <1%. EUCAST breakpoints yielded categorical agreements of >99% and no MEs for both disk diffusion and Etest; however, VMEs occurred at unacceptable rates of 44.4% (disk diffusion) and 33.3% (Etest). All isolates with agar dilution MICs of ≥32 µg/ml (n = 12) and a subset of isolates with MICs of ≤16 µg/ml (n = 49) were also tested using the Vitek 2 AST-N391 card and generated fosfomycin MICs 1 to ≥3 doubling dilutions lower than agar dilution for 11/12 isolates with agar dilution MICs of ≥32 µg/ml. We conclude that performing fosfomycin disk diffusion or Etest on urinary isolates of E. coli and interpreting results using CLSI breakpoints reliably identified fosfomycin-susceptible isolates regardless of differences in endpoint reading criteria. EUCAST breakpoints generated excessive rates of VMEs for our isolate collection of high fosfomycin susceptibility.


Assuntos
Fosfomicina , Antibacterianos/farmacologia , Escherichia coli , Fosfomicina/farmacologia , Humanos , Técnicas In Vitro , Testes de Sensibilidade Microbiana
8.
Drugs ; 80(3): 285-313, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31970713

RESUMO

Omadacycline is a novel aminomethylcycline antibiotic developed as a once-daily, intravenous and oral treatment for acute bacterial skin and skin structure infection (ABSSSI) and community-acquired bacterial pneumonia (CABP). Omadacycline, a derivative of minocycline, has a chemical structure similar to tigecycline with an alkylaminomethyl group replacing the glycylamido group at the C-9 position of the D-ring of the tetracycline core. Similar to other tetracyclines, omadacycline inhibits bacterial protein synthesis by binding to the 30S ribosomal subunit. Omadacycline possesses broad-spectrum antibacterial activity against Gram-positive and Gram-negative aerobic, anaerobic, and atypical bacteria. Omadacycline remains active against bacterial isolates possessing common tetracycline resistance mechanisms such as efflux pumps (e.g., TetK) and ribosomal protection proteins (e.g., TetM) as well as in the presence of resistance mechanisms to other antibiotic classes. The pharmacokinetics of omadacycline are best described by a linear, three-compartment model following a zero-order intravenous infusion or first-order oral administration with transit compartments to account for delayed absorption. Omadacycline has a volume of distribution (Vd) ranging from 190 to 204 L, a terminal elimination half-life (t½) of 13.5-17.1 h, total clearance (CLT) of 8.8-10.6 L/h, and protein binding of 21.3% in healthy subjects. Oral bioavailability of omadacycline is estimated to be 34.5%. A single oral dose of 300 mg (bioequivalent to 100 mg IV) of omadacycline administered to fasted subjects achieved a maximum plasma concentration (Cmax) of 0.5-0.6 mg/L and an area under the plasma concentration-time curve from 0 to infinity (AUC0-∞) of 9.6-11.9 mg h/L. The free plasma area under concentration-time curve divided by the minimum inhibitory concentration (i.e., fAUC24h/MIC), has been established as the pharmacodynamic parameter predictive of omadacycline antibacterial efficacy. Several animal models including neutropenic murine lung infection, thigh infection, and intraperitoneal challenge model have documented the in vivo antibacterial efficacy of omadacycline. A phase II clinical trial on complicated skin and skin structure infection (cSSSI) and three phase III clinical trials on ABSSSI and CABP demonstrated the safety and efficacy of omadacycline. The phase III trials, OASIS-1 (ABSSSI), OASIS-2 (ABSSSI), and OPTIC (CABP), established non-inferiority of omadacycline to linezolid (OASIS-1, OASIS-2) and moxifloxacin (OPTIC), respectively. Omadacycline is currently approved by the FDA for use in treatment of ABSSSI and CABP. Phase II clinical trials involving patients with acute cystitis and acute pyelonephritis are in progress. Mild, transient gastrointestinal events are the predominant adverse effects associated with use of omadacycline. Based on clinical trial data to date, the adverse effect profile of omadacycline is similar to studied comparators, linezolid and moxifloxacin. Unlike tigecycline and eravacycline, omadacycline has an oral formulation that allows for step-down therapy from the intravenous formulation, potentially facilitating earlier hospital discharge, outpatient therapy, and cost savings. Omadacycline has a potential role as part of an antimicrobial stewardship program in the treatment of patients with infections caused by antibiotic-resistant and multidrug-resistant Gram-positive [including methicillin-resistant Staphylococcus aureus (MRSA)] and Gram-negative pathogens.


Assuntos
Antibacterianos/farmacologia , Infecções Comunitárias Adquiridas/tratamento farmacológico , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Dermatopatias Bacterianas/tratamento farmacológico , Tetraciclinas/administração & dosagem , Tetraciclinas/farmacologia , Administração Intravenosa , Administração Oral , Antibacterianos/administração & dosagem , Humanos
9.
J Antimicrob Chemother ; 74(Suppl 4): iv55-iv63, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31505646

RESUMO

OBJECTIVES: This study assessed the demographic and molecular characteristics of community-associated (CA) and healthcare-associated (HA) MRSA genotypes in Canadian hospitals between 2007 and 2016. METHODS: A total of 1963 MRSA were identified among 9103 Staphylococcus aureus isolates collected from inpatients and outpatients presenting to tertiary-care medical centres across Canada. Antimicrobial susceptibility testing was performed by broth microdilution in accordance with CLSI standards (M7 11th edition, 2018). PCR was performed to detect the Panton-Valentine leucocidin (PVL) genes and molecular analysis was performed by spa typing. RESULTS: Between 2007 and 2016, the annual proportion of S. aureus that were MRSA decreased from 26.1% to 16.9% (P < 0.0001). The proportion of CA-MRSA genotypes increased significantly from 20.8% in 2007 to 56.3% in 2016 (P < 0.0001) while HA-MRSA genotypes decreased from 79.2% to 43.8% throughout the study period (P < 0.0001). Predominant genotypes included HA genotype CMRSA2 (USA100/800) (53.6%) and CA genotype CMRSA10 (USA300) (24.9%). PVL was present in 30.1% of all MRSA isolates, including 78.4% of CA-MRSA and 1.7% of HA-MRSA genotypes. Resistance to clarithromycin, clindamycin, trimethoprim/sulfamethoxazole and fluoroquinolones decreased significantly over time (P < 0.0001). CONCLUSIONS: The proportion of MRSA in Canada declined between 2007 and 2016. In contrast, the proportion of CA-MRSA strain types, particularly CMRSA10 (USA300), continues to increase. In 2016, CA-MRSA genotypes surpassed HA-MRSA as the most common cause of MRSA infections in Canadian hospitals.


Assuntos
Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Infecções Estafilocócicas/microbiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Toxinas Bacterianas/genética , Canadá/epidemiologia , Criança , Pré-Escolar , Infecções Comunitárias Adquiridas , Infecção Hospitalar , Exotoxinas/genética , Feminino , Genótipo , Hospitais , Humanos , Lactente , Leucocidinas/genética , Masculino , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/genética , Pessoa de Meia-Idade , Infecções Estafilocócicas/epidemiologia , Adulto Jovem
10.
J Antimicrob Chemother ; 74(Suppl 4): iv64-iv71, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31505647

RESUMO

OBJECTIVES: To assess the prevalence, antimicrobial susceptibilities and molecular characteristics of ESBL-producing Escherichia coli and Klebsiella pneumoniae infecting patients receiving care in Canadian hospitals from January 2007 to December 2016. METHODS: Clinical isolates of E. coli (n = 8387) and K. pneumoniae (n = 2623) submitted to CANWARD, an ongoing Canadian national surveillance study, were tested using the CLSI reference broth microdilution method to determine their susceptibility to 15 antimicrobial agents. ESBL-producing E. coli and K. pneumoniae confirmed by the CLSI phenotypic method and putative AmpC-producing E. coli underwent PCR testing and DNA sequencing to identify resistance genes. Annual proportions of isolates harbouring ESBL and AmpC genes were assessed by the Cochran-Armitage test of trend. RESULTS: The annual proportion of isolates of E. coli that were ESBL producing increased from 3.4% in 2007 to 11.1% in 2016 (P < 0.0001); >95% of ESBL-producing E. coli were susceptible to amikacin, colistin, ertapenem, meropenem and tigecycline. The proportion of isolates of K. pneumoniae that were ESBL producing increased from 1.3% in 2007 to 9.7% in 2016 (P < 0.0001); >95% of ESBL-producing K. pneumoniae were susceptible to amikacin and meropenem. CTX-M-15 was the predominant genotype in both ESBL-producing E. coli (64.2% of isolates) and ESBL-producing K. pneumoniae (51.0%). The annual proportion of isolates of E. coli that were AmpC producing [annual proportion mean 1.9% (range 0.3%-3.1%)] was unchanged from 2007 to 2016 (P > 0.5). CONCLUSIONS: The prevalence of both ESBL-producing E. coli and K. pneumoniae increased significantly in Canada during the study period while the prevalence of AmpC-producing E. coli remained low and stable.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Infecções por Escherichia coli/microbiologia , Escherichia coli/enzimologia , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/enzimologia , Adolescente , Adulto , Idoso , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Canadá/epidemiologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/epidemiologia , Feminino , Genótipo , Humanos , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/isolamento & purificação , Laboratórios Hospitalares , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Adulto Jovem , beta-Lactamases/genética , beta-Lactamases/metabolismo
11.
J Antimicrob Chemother ; 74(Suppl 4): iv22-iv31, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31505648

RESUMO

OBJECTIVES: We sought to analyse 10 years of longitudinal surveillance data (2007-16) from the CANWARD study and describe emerging trends in antimicrobial resistance for key bacterial pathogens across Canada. METHODS: Longitudinal data from CANWARD study sites that contributed isolates every year from 2007 to 2016 were analysed to identify trends in antimicrobial resistance over time using univariate tests of trend and multivariate regression models to account for the effects of patient demographics. RESULTS: Statistically significant increases occurred in the proportion of Escherichia coli isolates resistant to extended-spectrum cephalosporins, amoxicillin/clavulanate, trimethoprim/sulfamethoxazole and ciprofloxacin. Similarly, the proportion of Klebsiella pneumoniae isolates resistant to extended-spectrum cephalosporins, amoxicillin/clavulanate, trimethoprim/sulfamethoxazole, ciprofloxacin and carbapenems increased during the study. The proportion of Enterobacter cloacae isolates resistant to ceftazidime and trimethoprim/sulfamethoxazole increased. The proportion of both ESBL-positive E. coli and K. pneumoniae (including bloodstream isolates) increased significantly between 2007 and 2016. A reduction in the proportion of Pseudomonas aeruginosa that were ciprofloxacin, cefepime, colistin, amikacin and gentamicin resistant and an increase in the proportion of P. aeruginosa isolates non-susceptible to meropenem were observed. The proportion of isolates of Staphylococcus aureus non-susceptible to clarithromycin, clindamycin and trimethoprim/sulfamethoxazole decreased over time while an increase in the proportion of isolates of Streptococcus pneumoniae non-susceptible to clarithromycin, clindamycin and doxycycline was observed. CONCLUSIONS: Increases in Enterobacteriaceae resistance to multiple classes of antimicrobials, increases in ESBL-positive E. coli and K. pneumoniae, and the small but significant increase in carbapenem-resistant K. pneumoniae were the most remarkable changes in antimicrobial resistance observed from 2007 to 2016 in Canada.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/microbiologia , Farmacorresistência Bacteriana Múltipla , Adolescente , Adulto , Idoso , Bactérias/isolamento & purificação , Infecções Bacterianas/epidemiologia , Canadá/epidemiologia , Enterobacter cloacae/efeitos dos fármacos , Enterobacter cloacae/isolamento & purificação , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/isolamento & purificação , Monitoramento Epidemiológico , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Feminino , Hospitais , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Masculino , Pessoa de Meia-Idade , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/isolamento & purificação , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/isolamento & purificação , Adulto Jovem
12.
J Antimicrob Chemother ; 74(Suppl 4): iv5-iv21, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31505641

RESUMO

OBJECTIVES: The CANWARD surveillance study was established in 2007 to annually assess the in vitro susceptibilities of a variety of antimicrobial agents against bacterial pathogens isolated from patients receiving care in Canadian hospitals. METHODS: 42 936 pathogens were received and CLSI broth microdilution testing was performed on 37 355 bacterial isolates. Limited patient demographic data submitted with each isolate were collated and analysed. RESULTS: Of the isolates tested, 43.5%, 33.1%, 13.2% and 10.2% were from blood, respiratory, urine and wound specimens, respectively; 29.9%, 24.8%, 19.0%, 18.1% and 8.2% of isolates were from patients in medical wards, emergency rooms, ICUs, hospital clinics and surgical wards. Patient demographics associated with the isolates were: 54.6% male/45.4% female; 13.1% patients aged ≤17 years, 44.3% 18-64 years and 42.7% ≥65 years. The three most common pathogens were Staphylococcus aureus (21.2%, both methicillin-susceptible and MRSA), Escherichia coli (19.6%) and Pseudomonas aeruginosa (9.0%). E. coli were most susceptible to meropenem and tigecycline (99.9%), ertapenem and colistin (99.8%), amikacin (99.7%) and ceftolozane/tazobactam and plazomicin (99.6%). Twenty-three percent of S. aureus were MRSA. MRSA were most susceptible to ceftobiprole, linezolid and telavancin (100%), daptomycin (99.9%), vancomycin (99.8%) and tigecycline (99.2%). P. aeruginosa were most susceptible to ceftolozane/tazobactam (98.3%) and colistin (95.0%). CONCLUSIONS: The CANWARD surveillance study has provided 10 years of reference antimicrobial susceptibility testing data on pathogens commonly causing infections in patients attending Canadian hospitals.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Infecções por Escherichia coli/microbiologia , Escherichia coli/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Adolescente , Adulto , Idoso , Canadá/epidemiologia , Monitoramento Epidemiológico , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/epidemiologia , Feminino , Hospitais , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Infecções por Pseudomonas/epidemiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/isolamento & purificação , Infecções Estafilocócicas/epidemiologia , Staphylococcus aureus/isolamento & purificação , Adulto Jovem
13.
Int J Antimicrob Agents ; 54(1): 62-68, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31034938

RESUMO

Escherichia coli isolates (n = 2035) from urine specimens of outpatients presenting to Canadian medical clinics and hospital emergency departments from 2007-2016 were collected as part of the CANWARD surveillance study. Isolate identification and antimicrobial susceptibility testing (AST) were performed at a central site (Health Sciences Centre, Winnipeg, Canada). AST of first- and second-line oral antimicrobial agents was performed using CLSI methods (M07, 11th ed, 2018); fosfomycin was tested by agar dilution and all other agents by broth microdilution. Minimum inhibitory concentrations (MICs) were interpreted using CLSI M100 (2018) criteria. Fosfomycin (99.2% of isolates susceptible), nitrofurantoin (97.5%) and cefalexin (93.6%) were the most active agents tested; amoxicillin/clavulanic acid (AMC) (85.6%), ciprofloxacin (83.0%) and trimethoprim/sulfamethoxazole (SXT) (77.0%) were less active. Annual percentages of isolates positive for extended-spectrum ß-lactamases (ESBLs) or demonstrating multidrug-resistant (MDR) phenotypes increased from 0.8% (2007) to 10.1% (2016), and from 9.7% (2007) to 16.5% (2016), respectively, whilst the annual frequency of AmpC-positive isolates decreased from a high of 3.2% in 2008 to 0.7% in 2016. The most common MDR phenotype of E. coli was non-susceptibility to AMC, ciprofloxacin, and SXT, accounting for 12.7% (26/205) of all MDR isolates. Rates of susceptibility were higher for fosfomycin than for the five other oral agents tested against ESBL-positive (96.1% susceptible) and MDR (95.1%) isolates and were equal to nitrofurantoin (96.4%) against AmpC-positive isolates. Prudent use of antimicrobials and close monitoring of antimicrobial susceptibilities of clinical uropathogenic E. coli isolates are imperative to help preserve the utility of oral antimicrobials.


Assuntos
Antibacterianos/farmacologia , Infecções por Escherichia coli/microbiologia , Escherichia coli/efeitos dos fármacos , Pacientes Ambulatoriais , Infecções Urinárias/microbiologia , Urina/microbiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Canadá , Criança , Pré-Escolar , Escherichia coli/isolamento & purificação , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Adulto Jovem
14.
Diagn Microbiol Infect Dis ; 94(2): 113-115, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30718158

RESUMO

Matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry is commonly used to identify bacteria and yeasts. Studies indicate that MALDI-TOF is relatively indifferent to the medium used for culture. We report on an investigation into high- and low-confidence MALDI-TOF misidentifications of Mycoplasma arginini and Mycoplasma alkalescens from urine specimens plated to CHROMagar™ Orientation medium that appear to be due to the intrinsic mass spectrum of the medium.


Assuntos
Meios de Cultura/química , Erros de Diagnóstico , Infecções por Mycoplasma/diagnóstico , Mycoplasma/isolamento & purificação , Manejo de Espécimes/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Urina/microbiologia , Humanos , Mycoplasma/química , Infecções por Mycoplasma/microbiologia , Infecções Urinárias/diagnóstico , Infecções Urinárias/microbiologia
15.
Drugs ; 79(3): 271-289, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30712199

RESUMO

Cefiderocol is an injectable siderophore cephalosporin discovered and being developed by Shionogi & Co., Ltd., Japan. As with other ß-lactam antibiotics, the principal antibacterial/bactericidal activity of cefiderocol occurs by inhibition of Gram-negative bacterial cell wall synthesis by binding to penicillin binding proteins; however, it is unique in that it enters the bacterial periplasmic space as a result of its siderophore-like property and has enhanced stability to ß-lactamases. The chemical structure of cefiderocol is similar to both ceftazidime and cefepime, which are third- and fourth-generation cephalosporins, respectively, but with high stability to a variety of ß-lactamases, including AmpC and extended-spectrum ß-lactamases (ESBLs). Cefiderocol has a pyrrolidinium group in the side chain at position 3 like cefepime and a carboxypropanoxyimino group in the side chain at position 7 of the cephem nucleus like ceftazidime. The major difference in the chemical structures of cefiderocol, ceftazidime and cefepime is the presence of a catechol group on the side chain at position 3. Together with the high stability to ß-lactamases, including ESBLs, AmpC and carbapenemases, the microbiological activity of cefiderocol against aerobic Gram-negative bacilli is equal to or superior to that of ceftazidime-avibactam and meropenem, and it is active against a variety of Ambler class A, B, C and D ß-lactamases. Cefiderocol is also more potent than both ceftazidime-avibactam and meropenem versus Acinetobacter baumannii, including meropenem non-susceptible and multidrug-resistant (MDR) isolates. Cefiderocol's activity against meropenem-non-susceptible and Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriales is comparable or superior to ceftazidime-avibactam. Cefiderocol is also more potent than both ceftazidime-avibactam and meropenem against all resistance phenotypes of Pseudomonas aeruginosa and against Stenotrophomonas maltophilia. The current dosing regimen being used in phase III studies is 2 g administered intravenously every 8 h (q8 h) using a 3-h infusion. The pharmacokinetics of cefiderocol are best described by a three-compartment linear model. The mean plasma half-life (t½) was ~ 2.3 h, protein binding is 58%, and total drug clearance ranged from 4.6-6.0 L/h for both single- and multi-dose infusions and was primarily renally excreted unchanged (61-71%). Cefiderocol is primarily renally excreted unchanged and clearance correlates with creatinine clearance. Dosage adjustment is thus required for both augmented renal clearance and in patients with moderate to severe renal impairment. In vitro and in vivo pharmacodynamic studies have reported that as with other cephalosporins the pharmacodynamic index that best predicts clinical outcome is the percentage of time that free drug concentrations exceed the minimum inhibitory concentration (%fT > MIC). In vivo efficacy of cefiderocol has been studied in a variety of humanized drug exposure murine and rat models of infection utilizing a variety of MDR and extremely drug resistant strains. Cefiderocol has performed similarly to or has been superior to comparator agents, including ceftazidime and cefepime. A phase II prospective, multicenter, double-blind, randomized clinical trial assessed the safety and efficacy of cefiderocol 2000 mg q8 h versus imipenem/cilastatin 1000 mg q8 h, both administered intravenously for 7-14 days over 1 h, in the treatment of complicated urinary tract infection (cUTI, including pyelonephritis) or acute uncomplicated pyelonephritis in hospitalized adults. A total of 452 patients were initially enrolled in the study, with 303 in the cefiderocol arm and 149 in the imipenem/cilastatin arm. The primary outcome measure was a composite of clinical cure and microbiological eradication at the test-of-cure (TOC) visit, that is, 7 days after the end of treatment in the microbiological intent-to-treat (MITT) population. Secondary outcome measures included microbiological response per pathogen and per patient at early assessment (EA), end of treatment (EOT), TOC, and follow-up (FUP); clinical response per pathogen and per patient at EA, EOT, TOC, and FUP; plasma, urine and concentrations of cefiderocol; and the number of participants with adverse events. The composite of clinical and microbiological response rates was 72.6% (183/252) for cefiderocol and 54.6% (65/119) for imipenem/cilastatin in the MITT population. Clinical response rates per patient at the TOC visit were 89.7% (226/252) for cefiderocol and 87.4% (104/119) for imipenem/cilastatin in the MITT population. Microbiological eradication rates were 73.0% (184/252) for cefiderocol and 56.3% (67/119) for imipenem/cilastatin in the MITT population. Additionally, two phase III clinical trials are currently being conducted by Shionogi & Co., Ltd., Japan. The two trials are evaluating the efficacy of cefiderocol in the treatment of serious infections in adult patients caused by carbapenem-resistant Gram-negative pathogens and evaluating the efficacy of cefiderocol in the treatment of adults with hospital-acquired bacterial pneumonia, ventilator-associated pneumonia or healthcare-associated pneumonia caused by Gram-negative pathogens. Cefiderocol appears to be well tolerated (minor reported adverse effects were gastrointestinal and phlebitis related), with a side effect profile that is comparable to other cephalosporin antimicrobials. Cefiderocol appears to be well positioned to help address the increasing number of infections caused by carbapenem-resistant and MDR Gram-negative bacilli, including ESBL- and carbapenemase-producing strains (including metallo-ß-lactamase producers). A distinguishing feature of cefiderocol is its activity against resistant P. aeruginosa, A. baumannii, S. maltophilia and Burkholderia cepacia.


Assuntos
Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Farmacorresistência Bacteriana Múltipla , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Sideróforos/química , Animais , Compostos Azabicíclicos/farmacologia , Carbapenêmicos/farmacologia , Ceftazidima/farmacologia , Ensaios Clínicos como Assunto , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Bactérias Gram-Negativas/efeitos dos fármacos , Humanos , Meropeném/farmacologia , Estrutura Molecular , Ensaios Clínicos Controlados Aleatórios como Assunto , Inibidores de beta-Lactamases/farmacologia , Cefiderocol
16.
Artigo em Inglês | MEDLINE | ID: mdl-30397056

RESUMO

The in vitro activity of sulopenem was assessed against a collection from 2014 to 2016 of 539 urinary isolates of Escherichia coli from Canadian patients by using CLSI-defined broth microdilution methodology. A concentration of sulopenem 0.03 µg/ml inhibited both 50% (MIC50) and 90% (MIC90) of isolates tested; sulopenem MICs ranged from 0.015 to 0.25 µg/ml. The in vitro activity of sulopenem was unaffected by nonsusceptibility to trimethoprim-sulfamethoxazole and/or ciprofloxacin, multidrug-resistant phenotypes, extended-spectrum ß-lactamases, or AmpC ß-lactamases.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Lactamas/farmacologia , Administração Oral , Canadá , Ciprofloxacina/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Escherichia coli/metabolismo , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Fenótipo , Estudos Retrospectivos , Combinação Trimetoprima e Sulfametoxazol/farmacologia , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/microbiologia
18.
Drugs ; 78(1): 65-98, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29230684

RESUMO

Relebactam (formerly known as MK-7655) is a non-ß-lactam, bicyclic diazabicyclooctane, ß-lactamase inhibitor that is structurally related to avibactam, differing by the addition of a piperidine ring to the 2-position carbonyl group. Vaborbactam (formerly known as RPX7009) is a non-ß-lactam, cyclic, boronic acid-based, ß-lactamase inhibitor. The structure of vaborbactam is unlike any other currently marketed ß-lactamase inhibitor. Both inhibitors display activity against Ambler class A [including extended-spectrum ß-lactamases (ESBLs), Klebsiella pneumoniae carbapenemases (KPCs)] and class C ß-lactamases (AmpC). Little is known about the potential for relebactam or vaborbactam to select for resistance; however, inactivation of the porin protein OmpK36 in K. pneumoniae has been reported to confer resistance to both imipenem-relebactam and meropenem-vaborbactam. The addition of relebactam significantly improves the activity of imipenem against most species of Enterobacteriaceae [by lowering the minimum inhibitory concentration (MIC) by 2- to 128-fold] depending on the presence or absence of ß-lactamase enzymes. Against Pseudomonas aeruginosa, the addition of relebactam also improves the activity of imipenem (MIC reduced eightfold). Based on the data available, the addition of relebactam does not improve the activity of imipenem against Acinetobacter baumannii, Stenotrophomonas maltophilia and most anaerobes. Similar to imipenem-relebactam, the addition of vaborbactam significantly (2- to > 1024-fold MIC reduction) improves the activity of meropenem against most species of Enterobacteriaceae depending on the presence or absence of ß-lactamase enzymes. Limited data suggest that the addition of vaborbactam does not improve the activity of meropenem against A. baumannii, P. aeruginosa, or S. maltophilia. The pharmacokinetics of both relebactam and vaborbactam are described by a two-compartment, linear model and do not appear to be altered by the co-administration of imipenem and meropenem, respectively. Relebactam's approximate volume of distribution (V d) and elimination half-life (t ½) of ~ 18 L and 1.2-2.1 h, respectively, are similar to imipenem. Likewise, vaborbactam's V d and t½ of ~ 18 L and 1.3-2.0 h, respectively, are comparable to meropenem. Like imipenem and meropenem, relebactam and vaborbactam are both primarily renally excreted, and clearance correlates with creatinine clearance. In vitro and in vivo pharmacodynamic studies have reported bactericidal activity for imipenem-relebactam and meropenem-vaborbactam against various Gram-negative ß-lactamase-producing bacilli that are not inhibited by their respective carbapenems alone. These data also suggest that pharmacokinetic-pharmacodynamic parameters correlating with efficacy include time above the MIC for the carbapenems and overall exposure for their companion ß-lactamase inhibitors. Phase II clinical trials to date have reported that imipenem-relebactam is as effective as imipenem alone for treatment of complicated intra-abdominal infections and complicated urinary tract infections, including acute pyelonephritis. Imipenem-relebactam is currently in two phase III clinical trials for the treatment of imipenem-resistant bacterial infections, as well as hospital-associated bacterial pneumonia (HABP) and ventilator-associated bacterial pneumonia (VABP). A phase III clinical trial has reported superiority of meropenem-vaborbactam over piperacillin-tazobactam for the treatment of complicated urinary tract infections, including acute pyelonephritis. Meropenem-vaborbactam has recently demonstrated higher clinical cure rates versus best available therapy for the treatment of carbapenem-resistant Enterobacteriaceae (CRE), as well as for HABP and VABP. The safety and tolerability of imipenem-relebactam and meropenem-vaborbactam has been reported in various phase I pharmacokinetic studies and phase II and III clinical trials. Both combinations appear to be well tolerated in healthy subjects and hospitalized patients, with few serious drug-related treatment-emergent adverse events reported to date. In conclusion, relebactam and vaborbactam serve to broaden the spectrum of imipenem and meropenem, respectively, against ß-lactamase-producing Gram-negative bacilli. The exact roles for imipenem-relebactam and meropenem-vaborbactam will be defined by efficacy and safety data from further clinical trials. Potential roles in therapy for these agents include the treatment of suspected or documented infections caused by resistant Gram-negative bacilli-producing ESBL, KPC, and/or AmpC ß-lactamases. The usage of these agents in patients with CRE infections will likely become the standard of care. Finally, increased activity of imipenem-relebactam against P. aeruginosa may be of clinical benefit to patients with suspected or documented P. aeruginosa infections.


Assuntos
Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Ácidos Borônicos/farmacologia , Compostos Heterocíclicos com 1 Anel/farmacologia , Imipenem/farmacologia , Infecções Intra-Abdominais/tratamento farmacológico , Tienamicinas/farmacologia , Inibidores de beta-Lactamases/farmacologia , Animais , Antibacterianos/química , Compostos Azabicíclicos/química , Ácidos Borônicos/química , Combinação de Medicamentos , Farmacorresistência Bacteriana/efeitos dos fármacos , Compostos Heterocíclicos com 1 Anel/química , Humanos , Imipenem/química , Meropeném , Estrutura Molecular , Relação Estrutura-Atividade , Tienamicinas/química , Inibidores de beta-Lactamases/química
19.
Drugs ; 76(18): 1737-1757, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27909995

RESUMO

Solithromycin is a novel fluoroketolide developed in both oral and intravenous formulations to address increasing macrolide resistance in pathogens causing community-acquired bacterial pneumonia (CABP). When compared with its macrolide and ketolide predecessors, solithromycin has several structural modifications which increase its ribosomal binding and reduce its propensity to known macrolide resistance mechanisms. Solithromycin, like telithromycin, affects 50S ribosomal subunit formation and function, as well as causing frame-shift errors during translation. However, unlike telithromycin, which binds to two sites on the ribosome, solithromycin has three distinct ribosomal binding sites. Its desosamine sugar interacts at the A2058/A2059 cleft in domain V (as all macrolides do), an extended alkyl-aryl side chain interacts with base pair A752-U2609 in domain II (similar to telithromycin), and a fluorine at C-2 of solithromycin provides additional binding to the ribosome. Studies describing solithromycin activity against Streptococcus pneumoniae have reported that it does not induce erm-mediated resistance because it lacks a cladinose moiety, and that it is less susceptible than other macrolides to mef-mediated efflux due to its increased ribosomal binding and greater intrinsic activity. Solithromycin has demonstrated potent in vitro activity against the most common CABP pathogens, including macrolide-, penicillin-, and fluoroquinolone-resistant isolates of S. pneumoniae, as well as Haemophilus influenzae and atypical bacterial pathogens. Solithromycin displays multi-compartment pharmacokinetics, a large volume of distribution (>500 L), approximately 67% bioavailability when given orally, and serum protein binding of 81%. Its major metabolic pathway appears to follow cytochrome P450 (CYP) 3A4, with metabolites of solithromycin undergoing biliary excretion. Its serum half-life is approximately 6-9 h, which is sufficient for once-daily administration. Pharmacodynamic activity is best described as fAUC0-24/MIC (the ratio of the area under the free drug concentration-time curve from 0 to 24 h to the minimum inhibitory concentration of the isolate). Solithromycin has completed one phase II and two phase III clinical trials in patients with CABP. In the phase II trial, oral solithromycin was compared with oral levofloxacin and demonstrated similar clinical success rates in the intention-to-treat (ITT) population (84.6 vs 86.6%). Clinical success in the clinically evaluable patients group was 83.6% of patients receiving solithromycin compared with 93.1% for patients receiving levofloxacin. In SOLITAIRE-ORAL, a phase III trial which assessed patients receiving oral solithromycin or oral moxifloxacin for CABP, an equivalent (non-inferior) early clinical response in the ITT population was demonstrated for patients receiving either solithromycin (78.2%) or moxifloxacin (77.9%). In a separate phase III trial, SOLITAIRE-IV, patients receiving intravenous-to-oral solithromycin (79.3%) demonstrated non-inferiority as the primary outcome of early clinical response in the ITT population compared with patients receiving intravenous-to-oral moxifloxacin (79.7%). Overall, solithromycin has been well tolerated in clinical trials, with gastrointestinal adverse events being most common, occurring in approximately 10% of patients. Transaminase elevation occurred in 5-10% of patients and generally resolved following cessation of therapy. None of the rare serious adverse events that occurred with telithromycin (i.e., hepatotoxicity) have been noted with solithromycin, possibly due to the fact that solithromycin (unlike telithromycin) does not possess a pyridine moiety in its chemical structure, which has been implicated in inhibiting nicotinic acetylcholine receptors. Because solithromycin is a possible substrate and inhibitor of both CYP3A4 and P-glycoprotein (P-gp), it may display drug interactions similar to macrolides such as clarithromycin. Overall, the in vitro activity, clinical efficacy, tolerability, and safety profile of solithromycin demonstrated to date suggest that it continues to be a promising treatment for CABP.


Assuntos
Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Comunitárias Adquiridas/tratamento farmacológico , Macrolídeos/farmacologia , Macrolídeos/uso terapêutico , Pneumonia Bacteriana/tratamento farmacológico , Triazóis/farmacologia , Triazóis/uso terapêutico , Animais , Humanos , Testes de Sensibilidade Microbiana/métodos , Streptococcus pneumoniae/efeitos dos fármacos
20.
Drugs ; 76(5): 567-88, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26863149

RESUMO

Eravacycline is an investigational, synthetic fluorocycline antibacterial agent that is structurally similar to tigecycline with two modifications to the D-ring of its tetracycline core: a fluorine atom replaces the dimethylamine moiety at C-7 and a pyrrolidinoacetamido group replaces the 2-tertiary-butyl glycylamido at C-9. Like other tetracyclines, eravacycline inhibits bacterial protein synthesis through binding to the 30S ribosomal subunit. Eravacycline demonstrates broad-spectrum antimicrobial activity against Gram-positive, Gram-negative, and anaerobic bacteria with the exception of Pseudomonas aeruginosa. Eravacycline is two- to fourfold more potent than tigecycline versus Gram-positive cocci and two- to eightfold more potent than tigecycline versus Gram-negative bacilli. Intravenous eravacycline demonstrates linear pharmacokinetics that have been described by a four-compartment model. Oral bioavailability of eravacycline is estimated at 28 % (range 26-32 %) and a single oral dose of 200 mg achieves a maximum plasma concentration (C max) and area under the plasma concentration-time curve from 0 to infinity (AUC0-∞) of 0.23 ± 0.04 mg/L and 3.34 ± 1.11 mg·h/L, respectively. A population pharmacokinetic study of intravenous (IV) eravacycline demonstrated a mean steady-state volume of distribution (V ss) of 320 L or 4.2 L/kg, a mean terminal elimination half-life (t ½) of 48 h, and a mean total clearance (CL) of 13.5 L/h. In a neutropenic murine thigh infection model, the pharmacodynamic parameter that demonstrated the best correlation with antibacterial response was the ratio of area under the plasma concentration-time curve over 24 h to the minimum inhibitory concentration (AUC0-24h/MIC). Several animal model studies including mouse systemic infection, thigh infection, lung infection, and pyelonephritis models have been published and demonstrated the in vivo efficacy of eravacycline. A phase II clinical trial evaluating the efficacy and safety of eravacycline in the treatment of community-acquired complicated intra-abdominal infection (cIAI) has been published as well, and phase III clinical trials in cIAI and complicated urinary tract infection (cUTI) have been completed. The eravacycline phase III program, known as IGNITE (Investigating Gram-Negative Infections Treated with Eravacycline), investigated its safety and efficacy in cIAI (IGNITE 1) and cUTI (IGNITE 2). Eravacycline met the primary endpoint in IGNITE 1, while data analysis for IGNITE 2 is currently ongoing. Common adverse events reported in phase I-III studies included gastrointestinal effects such as nausea and vomiting. Eravacycline is a promising intravenous and oral fluorocycline that may offer an alternative treatment option for patients with serious infections, particularly those caused by multidrug-resistant Gram-negative pathogens.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Tetraciclinas/farmacologia , Animais , Antibacterianos/farmacocinética , Disponibilidade Biológica , Ensaios Clínicos como Assunto , Meia-Vida , Humanos , Testes de Sensibilidade Microbiana/métodos , Minociclina/análogos & derivados , Minociclina/farmacocinética , Minociclina/farmacologia , Tetraciclinas/farmacocinética , Tigeciclina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...