Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 42(19): e114162, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37641864

RESUMO

Within the virion, adenovirus DNA associates with the virus-encoded, protamine-like structural protein pVII. Whether this association is organized, and how genome packaging changes during infection and subsequent transcriptional activation is currently unclear. Here, we combined RNA-seq, MNase-seq, ChIP-seq, and single genome imaging during early adenovirus infection to unveil the structure- and time-resolved dynamics of viral chromatin changes as well as their correlation with gene transcription. Our MNase mapping data indicates that the adenoviral genome is arranged in precisely positioned nucleoprotein particles with nucleosome-like characteristics, that we term adenosomes. We identified 238 adenosomes that are positioned by a DNA sequence code and protect about 60-70 bp of DNA. The incoming adenoviral genome is more accessible at early gene loci that undergo additional chromatin de-condensation upon infection. Histone H3.3 containing nucleosomes specifically replaces pVII at distinct genomic sites and at the transcription start sites of early genes. Acetylation of H3.3 is predominant at the transcription start sites and precedes transcriptional activation. Based on our results, we propose a central role for the viral pVII nucleoprotein architecture, which is required for the dynamic structural changes during early infection, including the regulation of nucleosome assembly prior to transcription initiation. Our study thus may aid the rational development of recombinant adenoviral vectors exhibiting sustained expression in gene therapy.


Assuntos
Cromatina , Nucleossomos , Nucleossomos/genética , Ativação Transcricional , Cromatina/genética , DNA/metabolismo , Montagem e Desmontagem da Cromatina , Adenoviridae/genética
2.
Mod Pathol ; 36(9): 100211, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37169258

RESUMO

Borderline hepatocellular adenomas (BL-HCA) are characterized by focal architectural/cytologic atypia and reticulin loss, features that are insufficient for a definitive diagnosis of hepatocellular carcinoma (HCC). The diagnosis and management of BL-HCA are challenging as their biological behavior, especially in terms of malignant potential, is still debated. We aimed to compare the clinicopathologic and molecular features of BL-HCA with those of typical HCA (T-HCA), HCA with malignant transformation (HCC on HCA), and HCC to assess the risk of malignancy. One hundred six liver resection specimens were retrospectively selected from 2 reference centers, including 39 BL-HCA, 42 T-HCA, 12 HCC on HCA, and 13 HCC specimens. Somatic mutations, including TERT promoter mutations associated with HCA malignant transformation and the gene expression levels of 96 genes, were investigated in 93 frozen samples. Additionally, TERT promoter mutations were investigated in 44 formalin-fixed, paraffin-embedded samples. The clinical features of patients with BL-HCA were similar to those of patients with T-HCA, patients being mainly women (69%) with a median age of 37 years. The median tumor size was 7.5 cm, 64% of patients had a single nodule, and no recurrence was observed. Compared with T-HCA, BL-HCA was significantly enriched in ß-catenin-mutated HCA in exon 3 (41% vs 6%; P < .001). Unsupervised statistical analysis based on gene expression showed that BL-HCA overlapped with T-HCA and HCC on HCA, favoring a molecular continuum of the tumors. TERT promoter mutations were observed only in HCC on HCA (42%) and in HCC (38%). In conclusion, these results suggest that despite their worrisome morphologic features, the clinicopathologic and molecular features of BL-HCA are much closer to those of T-HCA than those of HCC on HCA or HCC. This strongly supports the usefulness of combining morphologic and molecular analyses in a practical diagnostic approach for guiding the management of BL-HCA.


Assuntos
Adenoma de Células Hepáticas , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Feminino , Adulto , Masculino , Adenoma de Células Hepáticas/diagnóstico , Adenoma de Células Hepáticas/genética , Adenoma de Células Hepáticas/patologia , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Estudos Retrospectivos , Hepatectomia , Transformação Celular Neoplásica
3.
mBio ; 13(2): e0173321, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35343785

RESUMO

The past decade illuminated the H2A-H2B acidic patch as a cornerstone for both nucleosome recognition and chromatin structure regulation. Higher-order folding of chromatin arrays is mediated by interactions of histone H4 tail with an adjacent nucleosome acidic patch. Dynamic chromatin folding ensures a proper regulation of nuclear functions fundamental to cellular homeostasis. Many cellular factors have been shown to act on chromatin by tethering nucleosomes via an arginine anchor binding to the acidic patch. This tethering mechanism has also been described for several viral proteins. In this minireview, we will discuss the structural basis for acidic patch engagement by viral proteins and the implications during respective viral infections. We will also discuss a model in which acidic patch occupancy by these non-self viral proteins alters the local chromatin state by preventing H4 tail-mediated higher-order chromatin folding.


Assuntos
Nucleossomos , Proteínas Virais , Cromatina , Histonas/metabolismo , Proteínas Virais/metabolismo
4.
J Virol ; 96(3): e0127321, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34757845

RESUMO

After receptor-mediated endocytosis and endosomal escape, adenoviral capsids can travel via microtubule organizing centers to the nuclear envelope. Upon capsid disassembly, viral genome import into nuclei of interphase cells then occurs through nuclear pore complexes, involving the nucleoporins Nup214 and Nup358. Import also requires the activity of the classic nuclear export receptor CRM1, as it is blocked by the selective inhibitor leptomycin B. We have now used artificially enucleated as well as mitotic cells to analyze the role of an intact nucleus in different steps of the viral life cycle. In enucleated U2OS cells, viral capsids traveled to the microtubule organizing center, whereas their removal from this complex was blocked, suggesting that this step required nuclear factors. In mitotic cells, on the other hand, CRM1 promoted capsid disassembly and genome release, suggesting a role of this protein that does not require intact nuclear envelopes or nuclear pore complexes and is distinct from its function as a nuclear export receptor. Similar to enucleation, inhibition of CRM1 by leptomycin B also leads to an arrest of adenoviral capsids at the microtubule organizing center. In a small-scale screen using leptomycin B-resistant versions of CRM1, we identified a mutant, CRM1 W142A P143A, that is compromised with respect to adenoviral capsid disassembly in both interphase and mitotic cells. Strikingly, this mutant is capable of exporting cargo proteins out of the nucleus of living cells or digitonin-permeabilized cells, pointing to a role of the mutated region that is not directly linked to nuclear export. IMPORTANCE A role of nucleoporins and of soluble transport factors in adenoviral genome import into the nucleus of infected cells in interphase has previously been established. The nuclear export receptor CRM1 promotes genome import, but its precise function is not known. Using enucleated and mitotic cells, we showed that CRM1 does not simply function by exporting a crucial factor out of the nucleus that would then trigger capsid disassembly and genome import. Instead, CRM1 has an export-independent role, a notion that is also supported by a mutant, CRM1 W142A P143A, which is export competent but deficient in viral capsid disassembly, in both interphase and mitotic cells.


Assuntos
Infecções por Adenoviridae/metabolismo , Infecções por Adenoviridae/virologia , Adenoviridae/fisiologia , Capsídeo/metabolismo , Interações Hospedeiro-Patógeno , Carioferinas/metabolismo , Membrana Nuclear/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transporte Ativo do Núcleo Celular , Adenoviridae/efeitos dos fármacos , Linhagem Celular , Genoma Viral , Humanos , Carioferinas/antagonistas & inibidores , Carioferinas/química , Carioferinas/genética , Microtúbulos/metabolismo , Modelos Moleculares , Mutação , Conformação Proteica , Transporte Proteico , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/genética , Relação Estrutura-Atividade , Replicação Viral , Proteína Exportina 1
5.
Nucleic Acids Res ; 49(19): 11241-11256, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34634812

RESUMO

The stable insertion of the retroviral genome into the host chromosomes requires the association between integration complexes and cellular chromatin via the interaction between retroviral integrase and the nucleosomal target DNA. This final association may involve the chromatin-binding properties of both the retroviral integrase and its cellular cofactor LEDGF/p75. To investigate this and better understand the LEDGF/p75-mediated chromatin tethering of HIV-1 integrase, we used a combination of biochemical and chromosome-binding assays. Our study revealed that retroviral integrase has an intrinsic ability to bind and recognize specific chromatin regions in metaphase even in the absence of its cofactor. Furthermore, this integrase chromatin-binding property was modulated by the interaction with its cofactor LEDGF/p75, which redirected the enzyme to alternative chromosome regions. We also better determined the chromatin features recognized by each partner alone or within the functional intasome, as well as the chronology of efficient LEDGF/p75-mediated targeting of HIV-1 integrase to chromatin. Our data support a new chromatin-binding function of integrase acting in concert with LEDGF/p75 for the optimal association with the nucleosomal substrate. This work also provides additional information about the behavior of retroviral integration complexes in metaphase chromatin and the mechanism of action of LEDGF/p75 in this specific context.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Cromatina/metabolismo , Integrase de HIV/genética , Histonas/genética , Interações Hospedeiro-Patógeno/genética , Fatores de Transcrição/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cromatina/química , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Integrase de HIV/metabolismo , Histonas/metabolismo , Humanos , Células K562 , Cultura Primária de Células , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo , Linfócitos T/virologia , Fatores de Transcrição/metabolismo
6.
J Virol ; 94(10)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32161167

RESUMO

Nuclear import of viral genomes is an important step during the life cycle of adenoviruses (AdV), requiring soluble cellular factors as well as proteins of the nuclear pore complex (NPC). We addressed the role of the cytoplasmic nucleoporin Nup358 during adenoviral genome delivery by performing depletion/reconstitution experiments and time-resolved quantification of adenoviral genome import. Nup358-depleted cells displayed reduced efficiencies of nuclear import of adenoviral genomes, and the nuclear import receptor transportin 1 became rate limiting under these conditions. Furthermore, we identified a minimal N-terminal region of Nup358 that was sufficient to compensate for the import defect. Our data support a model where Nup358 functions as an assembly platform that promotes the formation of transport complexes, allowing AdV to exploit a physiological protein import pathway for accelerated transport of its DNA.IMPORTANCE Nuclear import of viral genomes is an essential step to initiate productive infection for several nuclear replicating DNA viruses. On the other hand, DNA is not a physiological nuclear import substrate; consequently, viruses have to exploit existing physiological transport routes. Here, we show that adenoviruses use the nucleoporin Nup358 to increase the efficiency of adenoviral genome import. In its absence, genome import efficiency is reduced and the transport receptor transportin 1 becomes rate limiting. We show that the N-terminal half of Nup358 is sufficient to drive genome import and identify a transportin 1 binding region. In our model, adenovirus genome import exploits an existing protein import pathway and Nup358 serves as an assembly platform for transport complexes.


Assuntos
Adenoviridae/genética , Adenoviridae/fisiologia , Chaperonas Moleculares/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , beta Carioferinas/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Genoma Viral , Células HEK293 , Células HeLa , Humanos , Chaperonas Moleculares/química , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/química , Transporte Proteico , Receptores Citoplasmáticos e Nucleares/metabolismo , beta Carioferinas/química
7.
J Virol ; 92(18)2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29997215

RESUMO

Adenoviruses are DNA viruses with a lytic infection cycle. Following the fate of incoming as well as recently replicated genomes during infections is a challenge. In this study, we used the ANCHOR3 technology based on a bacterial partitioning system to establish a versatile in vivo imaging system for adenoviral genomes. The system allows the visualization of both individual incoming and newly replicated genomes in real time in living cells. We demonstrate that incoming adenoviral genomes are attached to condensed cellular chromatin during mitosis, facilitating the equal distribution of viral genomes in daughter cells after cell division. We show that the formation of replication centers occurs in conjunction with in vivo genome replication and determine replication rates. Visualization of adenoviral DNA revealed that adenoviruses exhibit two kinetically distinct phases of genome replication. Low-level replication occurred during early replication, while high-level replication was associated with late replication phases. The transition between these phases occurred concomitantly with morphological changes of viral replication compartments and with the appearance of virus-induced postreplication (ViPR) bodies, identified by the nucleolar protein Mybbp1A. Taken together, our real-time genome imaging system revealed hitherto uncharacterized features of adenoviral genomes in vivo The system is able to identify novel spatiotemporal aspects of the adenovirus life cycle and is potentially transferable to other viral systems with a double-stranded DNA phase.IMPORTANCE Viruses must deliver their genomes to host cells to ensure replication and propagation. Characterizing the fate of viral genomes is crucial to understand the viral life cycle and the fate of virus-derived vector tools. Here, we integrated the ANCHOR3 system, an in vivo DNA-tagging technology, into the adenoviral genome for real-time genome detection. ANCHOR3 tagging permitted the in vivo visualization of incoming genomes at the onset of infection and of replicated genomes at late phases of infection. Using this system, we show viral genome attachment to condensed host chromosomes during mitosis, identifying this mechanism as a mode of cell-to-cell transfer. We characterize the spatiotemporal organization of adenovirus replication and identify two kinetically distinct phases of viral genome replication. The ANCHOR3 system is the first technique that allows the continuous visualization of adenoviral genomes during the entire virus life cycle, opening the way for further in-depth study.


Assuntos
Adenoviridae/fisiologia , Cromatina/virologia , DNA Viral/metabolismo , Replicação Viral , Adenoviridae/genética , Linhagem Celular , Cromatina/genética , Proteínas de Ligação a DNA , Genoma Viral , Células HEK293 , Humanos , Cinética , Estágios do Ciclo de Vida , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas de Ligação a RNA , Coloração e Rotulagem , Fatores de Transcrição , Ligação Viral
8.
JCI Insight ; 1(20): e88689, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27942586

RESUMO

Hepatic fibrosis arises from inflammation in the liver initiated by resident macrophage activation and massive leukocyte accumulation. Hepatic macrophages hold a central position in maintaining homeostasis in the liver and in the pathogenesis of acute and chronic liver injury linked to fibrogenesis. Interferon regulatory factor 5 (IRF5) has recently emerged as an important proinflammatory transcription factor involved in macrophage activation under acute and chronic inflammation. Here, we revealed that IRF5 is significantly induced in liver macrophages from human subjects developing liver fibrosis from nonalcoholic fatty liver disease or hepatitis C virus infection. Furthermore, IRF5 expression positively correlated with clinical markers of liver damage, such as plasma transaminase and bilirubin levels. Interestingly, mice lacking IRF5 in myeloid cells (MKO) were protected from hepatic fibrosis induced by metabolic or toxic stresses. Transcriptional reprogramming of macrophages lacking IRF5 was characterized by immunosuppressive and antiapoptotic properties. Consequently, IRF5 MKO mice respond to hepatocellular stress by promoting hepatocyte survival, leading to complete protection from hepatic fibrogenesis. Our findings reveal a regulatory network, governed by IRF5, that mediates hepatocyte death and liver fibrosis in mice and humans. Therefore, modulating IRF5 function may be an attractive approach to experimental therapeutics in fibroinflammatory liver disease.


Assuntos
Inflamação/patologia , Fatores Reguladores de Interferon/metabolismo , Cirrose Hepática/patologia , Ativação de Macrófagos , Macrófagos/metabolismo , Animais , Apoptose , Bilirrubina/sangue , Feminino , Hepatócitos/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/metabolismo , Transaminases/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...