Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 137(1): 273-80, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25618058

RESUMO

This paper studies the acoustical properties of hard-backed porous layers with periodically embedded air filled Helmholtz resonators. It is demonstrated that some enhancements in the acoustic absorption coefficient can be achieved in the viscous and inertial regimes at wavelengths much larger than the layer thickness. This enhancement is attributed to the excitation of two specific modes: Helmholtz resonance in the viscous regime and a trapped mode in the inertial regime. The enhancement in the absorption that is attributed to the Helmholtz resonance can be further improved when a small amount of porous material is removed from the resonator necks. In this way the frequency range in which these porous materials exhibit high values of the absorption coefficient can be extended by using Helmholtz resonators with a range of carefully tuned neck lengths.

2.
J Acoust Soc Am ; 136(3): 1139, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25190389

RESUMO

The absorption properties of a metaporous material made of non-resonant simple shape three-dimensional rigid inclusions (cube, cylinder, sphere, cone, and ring torus) embedded in a rigidly backed rigid-frame porous material are studied. A nearly total absorption can be obtained for a frequency lower than the quarter-wavelength resonance frequency due to the excitation of a trapped mode. To be correctly excited, this mode requires a filling fraction larger in three-dimensions than in two-dimensions for purely convex (cube, cylinder, sphere, and cone) shapes. At long wavelengths compared to the spatial period, a cube is found to be the best purely convex inclusion shape to embed in a cubic unit cell, while the embedment of a sphere or a cone cannot lead to an optimal absorption for some porous material properties and dimensions of the unit cell. At a fixed position of purely convex shape inclusion barycenter, the absorption coefficient only depends on the filling fraction and does not depend on the shape below the Bragg frequency arising from the interaction between the inclusion and its image with respect to the rigid backing. The influence of the incidence angle and of the material properties, namely, the flow resistivity is also shown. The results of the modeling are validated experimentally in the case of cubic and cylindrical inclusions.

3.
J Acoust Soc Am ; 133(1): 247-54, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23297899

RESUMO

The acoustic transmission coefficient of a resonant sonic crystal made of hollow bamboo rods is studied experimentally and theoretically. The plane wave expansion and multiple scattering theory (MST) are used to predict the bandgap in transmission coefficient of a non-resonant sonic crystal composed of rods without holes. The predicted results are validated against experimental data for the acoustic transmission coefficient. It is shown that a sonic crystal made from a natural material with some irregularities can exhibit a clear transmission bandgap. Then, the hollow bamboo rods are drilled between each node to create an array of Helmholtz resonators. It is shown that the presence of Helmholtz resonators leads to an additional bandgap in the low-frequency part of the transmission coefficient. The MST is modified in order to account for the resonance effect of the holes in the drilled bamboo rods. This resonant multiple scattering theory is validated experimentally and could be further used for the description and optimization of more complex resonant sonic crystals.


Assuntos
Acústica/instrumentação , Sasa , Som , Transdutores , Simulação por Computador , Desenho de Equipamento , Modelos Teóricos , Movimento (Física) , Análise Numérica Assistida por Computador , Reprodutibilidade dos Testes , Espalhamento de Radiação , Espectrografia do Som , Vibração
4.
J Acoust Soc Am ; 134(6): 4670, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25669279

RESUMO

The aim of this work is to design a layer of porous material with a high value of the absorption coefficient in a wide range of frequencies. It is shown that low frequency performance can be significantly improved by embedding periodically arranged resonant inclusions (slotted cylinders) into the porous matrix. The dissipation of the acoustic energy in a porous material due to viscous and thermal losses inside the pores is enhanced by the low frequency resonances of the inclusions and energy trapping between the inclusion and the rigid backing. A parametric study is performed in order to determine the influence of the geometry and the arrangement of the inclusions embedded in a porous layer on the absorption coefficient. The experiments confirm that low frequency absorption coefficient of a composite material is significantly higher than that of the porous layer without the inclusions.

5.
Water Sci Technol ; 63(1): 57-65, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21245554

RESUMO

The next challenge of wastewater treatment is to reliably remove micro-pollutants at the microgram per litre range in order to meet the environmental quality standards set by new regulations like the Water Framework Directive. The present work assessed the efficiency of different types of primary, secondary and tertiary processes for the removal of more than 100 priority substances and other relevant emerging pollutants through on-site mass balances over 19 municipal wastewater treatment lines. Secondary biological processes proved to be in average 30% more efficient than primary settling processes. The activated sludge (AS) process led to a significant reduction of pollution loads (more than 50% removal for 70% of the substances detected). Biofilm processes led to equivalent removal efficiencies compared to AS, except for some pharmaceuticals. The membrane bioreactor (MBR) process allowed to upgrade removal efficiencies of some substances only partially degraded during conventional AS processes. Preliminary tertiary processes like tertiary settling and sand filtration could achieve significant removal for adsorbable substances. Advanced tertiary processes, like ozonation, activated carbon and reverse osmosis were all very efficient (close to 100%) to complete the removal of polar pesticides and pharmaceuticals; less polar substances being better retained by reverse osmosis.


Assuntos
Recuperação e Remediação Ambiental/métodos , Poluentes da Água/isolamento & purificação , Biofilmes , Reatores Biológicos , Membranas Artificiais , Poluentes da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...