Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immunol Cell Biol ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38726582

RESUMO

Women are more prone to develop rheumatoid arthritis, with peak incidence occurring around menopause. Estrogen has major effects on the immune system and is protective against arthritis. We have previously shown that treatment with estrogen inhibits inflammation and joint destruction in murine models of arthritis, although the mechanisms involved remain unclear. Fibroblastic reticular cells (FRCs) are specialized stromal cells that generate the three-dimensional structure of lymph nodes (LNs). FRCs are vital for coordinating immune responses from within LNs and are characterized by the expression of the chemokine CCL19, which attracts immune cells. The aim of this study was to determine whether the influence of estrogen on innate and adaptive immune cells in arthritis is mediated by estrogen signaling in FRCs. Conditional knockout mice lacking estrogen receptor α (ERα) in CCL19-expressing cells (Ccl19-CreERαfl/fl) were generated and tested. Ccl19-CreERαfl/fl mice and littermate controls were ovariectomized, treated with vehicle or estradiol and subjected to the 28-day-long antigen-induced arthritis model to enable analyses of differentiated T- and B-cell populations and innate cells in LNs by flow cytometry. The results reveal that while the response to estradiol treatment in numbers of FRCs per LN is significantly reduced in mice lacking ERα in FRCs, estrogen does not inhibit joint inflammation or markedly affect immune responses in this arthritis model. Thus, this study validates the Ccl19-CreERαfl/fl strain for studying estrogen signaling in FRCs within inflammatory diseases, although the chosen arthritis model is deemed unsuitable for addressing this question.

2.
Sci Rep ; 14(1): 5684, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454100

RESUMO

The link between antibodies and bone mass is debated. Activated IgG, which interacts directly with Fc gamma receptors, stimulates osteoclastogenesis in vitro, and local injection in immune-activated mice leads to bone loss. Multiple myeloma patients with high serum IgG levels have induced osteoclast activation and display bone loss. In addition, bone loss has been linked to serum autoantibodies in autoimmune diseases, including anti-citrullinated protein antibodies (ACPA) in individuals with rheumatoid arthritis (RA). Whether serum IgG or autoantibodies regulate bone mass under healthy conditions is poorly studied. In elderly men, neither serum levels of polyclonal IgG nor autoantibody were associated with areal bone mineral density in the MrOS Sweden study. Repetitive systemic injections of high-dose polyclonal IgG complexes in mice did not exert any discernible impact on bone mineral density. However, repetitive local intra-articular injection of the same IgG complexes led to a localized reduction of trabecular bone density. These results indicate antibodies may only impact bone density when close to the bone, such as within the synovial joint.


Assuntos
Artrite Reumatoide , Masculino , Humanos , Animais , Camundongos , Idoso , Artrite Reumatoide/metabolismo , Autoanticorpos , Anticorpos Antiproteína Citrulinada , Receptores de IgG/metabolismo , Imunoglobulina G
3.
Sci Rep ; 13(1): 9046, 2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270592

RESUMO

Estradiol (E2) affects both reproductive and non-reproductive tissues, and the sensitivity to different doses of E2 varies between tissues. Membrane estrogen receptor α (mERα)-initiated signaling plays a tissue-specific role in mediating E2 effects, however, it is unclear if mERα signaling modulates E2 sensitivity. To determine this, we treated ovariectomized C451A females, lacking mERα signaling, and wildtype (WT) littermates with physiological (0.05 µg/mouse/day (low); 0.6 µg/mouse/day (medium)) or supraphysiological (6 µg/mouse/day (high)) doses of E2 (17ß-estradiol-3-benzoate) for three weeks. Low-dose treatment increased uterus weight in WT, but not C451A mice, while non-reproductive tissues (gonadal fat, thymus, trabecular and cortical bone) were unaffected in both genotypes. Medium-dose treatment increased uterus weight and bone mass and decreased thymus and gonadal fat weights in WT mice. Uterus weight was also increased in C451A mice, but the response was significantly attenuated (- 85%) compared to WT mice, and no effects were triggered in non-reproductive tissues. High-dose treatment effects in thymus and trabecular bone were significantly blunted (- 34% and - 64%, respectively) in C451A compared to WT mice, and responses in cortical bone and gonadal fat were similar between genotypes. Interestingly, the high dose effect in uterus was enhanced (+ 26%) in C451A compared to WT mice. In conclusion, loss of mERα signaling reduces the sensitivity to physiological E2 treatment in both non-reproductive tissues and uterus. Furthermore, the E2 effect after high-dose treatment in uterus is enhanced in the absence of mERα, suggesting a protective effect of mERα signaling in this tissue against supraphysiological E2 levels.


Assuntos
Estradiol , Receptor alfa de Estrogênio , Feminino , Camundongos , Animais , Humanos , Receptor alfa de Estrogênio/genética , Estradiol/farmacologia , Osso e Ossos , Transdução de Sinais , Densidade Óssea , Útero , Ovariectomia
4.
EBioMedicine ; 91: 104546, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37023531

RESUMO

BACKGROUND: Global sclerostin inhibition reduces fracture risk efficiently but has been associated with cardiovascular side effects. The strongest genetic signal for circulating sclerostin is in the B4GALNT3 gene region, but the causal gene is unknown. B4GALNT3 expresses the enzyme beta-1,4-N-acetylgalactosaminyltransferase 3 that transfers N-acetylgalactosamine onto N-acetylglucosaminebeta-benzyl on protein epitopes (LDN-glycosylation). METHODS: To determine if B4GALNT3 is the causal gene, B4galnt3-/- mice were developed and serum levels of total sclerostin and LDN-glycosylated sclerostin were analysed and mechanistic studies were performed in osteoblast-like cells. Mendelian randomization was used to determine causal associations. FINDINGS: B4galnt3-/- mice had higher circulating sclerostin levels, establishing B4GALNT3 as a causal gene for circulating sclerostin levels, and lower bone mass. However, serum levels of LDN-glycosylated sclerostin were lower in B4galnt3-/- mice. B4galnt3 and Sost were co-expressed in osteoblast-lineage cells. Overexpression of B4GALNT3 increased while silencing of B4GALNT3 decreased the levels of LDN-glycosylated sclerostin in osteoblast-like cells. Mendelian randomization demonstrated that higher circulating sclerostin levels, genetically predicted by variants in the B4GALNT3 gene, were causally associated with lower BMD and higher risk of fractures but not with higher risk of myocardial infarction or stroke. Glucocorticoid treatment reduced B4galnt3 expression in bone and increased circulating sclerostin levels and this may contribute to the observed glucocorticoid-induced bone loss. INTERPRETATION: B4GALNT3 is a key factor for bone physiology via regulation of LDN-glycosylation of sclerostin. We propose that B4GALNT3-mediated LDN-glycosylation of sclerostin may be a bone-specific osteoporosis target, separating the anti-fracture effect of global sclerostin inhibition, from indicated cardiovascular side effects. FUNDING: Found in acknowledgements.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Densidade Óssea , N-Acetilgalactosaminiltransferases , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Osso e Ossos , Densidade Óssea/genética , Glucocorticoides/farmacologia , Glicosilação , Humanos
5.
Sci Rep ; 12(1): 22449, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575297

RESUMO

Estrogen receptor alpha (ERα) signaling has beneficial skeletal effects in males. ERα signaling also affects other tissues, and to find bone-specific treatments, more knowledge regarding tissue-specific ERα signaling is needed. ERα is subjected to posttranslational modifications, including phosphorylation, which can influence ERα function in a tissue-specific manner. To determine the importance of phosphorylation site S122 (corresponding to human ERα site S118) for the skeleton and other tissues, male mice with a S122A mutation were used. Total areal bone mineral density was similar between gonadal intact S122A and WT littermates followed up to 12 months of age, and weights of estrogen-responsive organs normalized for body weight were unchanged between S122A and WT males at both 3 and 12 months of age. Interestingly, 12-month-old S122A males had decreased body weight compared to WT. To investigate if site S122 affects the estrogen response in bone and other tissues, 12-week-old S122A and WT males were orchidectomized (orx) and treated with estradiol (E2) or placebo pellets for four weeks. E2 increased cortical thickness in tibia in both orx WT (+ 60%, p < 0.001) and S122A (+ 45%, p < 0.001) males. However, the E2 effect on cortical thickness was significantly decreased in orx S122A compared to WT mice (- 24%, p < 0.05). In contrast, E2 affected trabecular bone and organ weights similarly in orx S122A and WT males. Thus, ERα phosphorylation site S122 is required for a normal E2 response specifically in cortical bone in male mice, a finding that may have implications for development of future treatments against male osteoporosis.


Assuntos
Receptor alfa de Estrogênio , Estrogênios , Humanos , Camundongos , Masculino , Animais , Criança , Lactente , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Fosforilação , Estrogênios/farmacologia , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/metabolismo , Estradiol , Peso Corporal
6.
Endocrinology ; 163(12)2022 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-36201601

RESUMO

Dehydroepiandrosterone (DHEA), an adrenal androgen precursor, can be metabolized in target tissues into active sex steroids. It has been proposed that DHEA supplementation might result in restoration of physiological local sex steroid levels, but knowledge on the effect of DHEA treatment on local sex steroid levels in multiple tissues is lacking. To determine the effects of DHEA on tissue-specific levels of sex steroids, we treated orchiectomized (ORX) male mice with DHEA for 3 weeks and compared them with vehicle-treated ORX mice and gonadal intact mice. Intra-tissue levels of sex steroids were analyzed in reproductive organs (seminal vesicles, prostate, m. levator ani), major body compartments (white adipose tissue, skeletal muscle, and brain), adrenals, liver, and serum using a sensitive and validated gas chromatography-mass spectrometry method. DHEA treatment restored levels of both testosterone (T) and dihydrotestosterone (DHT) to approximately physiological levels in male reproductive organs. In contrast, this treatment did not increase DHT levels in skeletal muscle or brain. In the liver, DHEA treatment substantially increased levels of T (at least 4-fold) and DHT (+536%, P < 0.01) compared with vehicle-treated ORX mice. In conclusion, we provide a comprehensive map of the effect of DHEA treatment on intra-tissue sex steroid levels in ORX mice with a restoration of physiological levels of androgens in male reproductive organs while DHT levels were not restored in the skeletal muscle or brain. This, and the unexpected supraphysiological androgen levels in the liver, may be a cause for concern considering the uncontrolled use of DHEA.


Assuntos
Androgênios , Di-Hidrotestosterona , Masculino , Camundongos , Animais , Di-Hidrotestosterona/farmacologia , Androgênios/farmacologia , Desidroepiandrosterona/farmacologia , Desidroepiandrosterona/metabolismo , Testosterona , Suplementos Nutricionais
7.
JBMR Plus ; 6(9): e10670, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36111205

RESUMO

Inflammation has a significant effect on bone remodeling and can result in bone loss via increased stimulation of osteoclasts. Activated immunoglobulins, especially autoantibodies, can increase osteoclastogenesis and are associated with pathological bone loss. Whether immunoglobulins and mature B lymphocytes are important for general bone architecture has not been completely determined. Here we demonstrate, using a transgenic mouse model, that reduction of mature B cells and immunoglobulins leads to increased trabecular bone mass compared to wild-type (WT) littermate controls. This bone effect is associated with a decrease in the number of osteoclasts and reduced bone resorption, despite decreased expression of osteoprotegerin. We also demonstrate that the reduction of mature B cells and immunoglobulins do not prevent bone loss caused by estrogen deficiency or arthritis compared to WT littermate controls. In conclusion, the reduction of mature B cells and immunoglobulins results in disturbed regulation of trabecular bone turnover in healthy conditions but is dispensable for pathological bone loss. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

8.
JBMR Plus ; 6(8): e10657, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35991530

RESUMO

Estrogen has pronounced effects on the immune system, which also influences bone homeostasis. In recent years, stromal cells in lymphoid organs have gained increasing attention as they not only support the regulation of immune responses but also affect bone remodeling. A conditional knockout mouse model where estrogen receptor alpha (ERα) is deleted in CCL19-expressing stromal cells (Ccl19-Cre ERα fl/fl mice) was generated and bone densitometry was performed to analyze the importance of stromal cell-specific ERα signaling on the skeleton. Results showed that female Ccl19-Cre ERα fl/fl mice display reduced total bone mineral density and detailed X-ray analyses revealed that ERα expression in CCL19-expressing stromal cells is important for trabecular but not cortical bone homeostasis. Further analysis showed that the trabecular bone loss is caused by increased osteoclastogenesis. Additionally, the bone formation rate was reduced; however, the expression of osteoprogenitor genes was not altered. Analysis of the bone marrow stromal cell compartment revealed a deletion of ERα in a subgroup of CXCL12-abundant reticular (CAR) cells resulting in increased secretion of the pro-osteoclastogenic chemokine CXCL12. In conclusion, this study reveals the importance of ERα signaling in CAR cells for bone health. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

9.
J Endocrinol ; 255(2): 39-51, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35993439

RESUMO

Among patients with knee osteoarthritis (OA), postmenopausal women are over-represented. The purpose of this study was to determine whether deficiency of female sex steroids affects OA progression and to evaluate the protective effect of treatment with a physiological dose of 17ß-estradiol (E2) on OA progression using a murine model. Ovariectomy (OVX) of female mice was used to mimic a postmenopausal state. OVX or sham-operated mice underwent surgery for destabilization of the medial meniscus (DMM) to induce OA. E2 was administered in a pulsed manner for 2 and 8 weeks. OVX of OA mice did not influence the cartilage phenotype or synovial thickness, while both cortical and trabecular subchondral bone mineral density (BMD) decreased after OVX compared with sham-operated mice at 8 weeks post-DMM surgery. Additionally, OVX mice displayed decreased motor activity, reduced threshold of pain sensitivity, and increased number of T cells in the inguinal lymph nodes compared to sham-operated mice 2 weeks after OA induction. Eight weeks of treatment with E2 prevented cartilage damage and thickening of the synovium in OVX OA mice. The motor activity was improved after E2 replacement at the 2 weeks time point, which was also associated with lower pain sensitivity in the OA paw. E2 treatment protected against OVX-induced loss of subchondral trabecular bone. The number of T cells in the inguinal lymph nodes was reduced by E2 treatment after 8 weeks. This study demonstrates that treatment with a physiological dose of E2 exerts a protective role by reducing OA symptoms.


Assuntos
Estradiol , Osteoartrite , Animais , Cartilagem , Modelos Animais de Doenças , Estradiol/farmacologia , Estradiol/uso terapêutico , Feminino , Humanos , Camundongos , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Ovariectomia , Dor
10.
J Endocrinol ; 253(2): 75-84, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35256537

RESUMO

Selective estrogen receptor modulators (SERMs) act as estrogen receptor (ER) agonists or antagonists in a tissue-specific manner. ERs exert effects via nuclear actions but can also utilize membrane-initiated signaling pathways. To determine if membrane-initiated ERα (mERα) signaling affects SERM action in a tissue-specific manner, C451A mice, lacking mERα signaling due to a mutation at palmitoylation site C451, were treated with Lasofoxifene (Las), Bazedoxifene (Bza), or estradiol (E2), and various tissues were evaluated. Las and Bza treatment increased uterine weight to a similar extent in C451A and control mice, demonstrating mERα-independent uterine SERM effects, while the E2 effect on the uterus was predominantly mERα-dependent. Las and Bza treatment increased both trabecular and cortical bone mass in controls to a similar degree as E2, while both SERM and E2 treatment effects were absent in C451A mice. This demonstrates that SERM effects, similar to E2 effects, in the skeleton are mERα-dependent. Both Las and E2 treatment decreased thymus weight in controls, while neither treatment affected the thymus in C451A mice, demonstrating mERα-dependent SERM and E2 effects in this tissue. Interestingly, both SERM and E2 treatments decreased the total body fat percent in C451A mice, demonstrating the ability of these treatments to affect fat tissue in the absence of functional mERα signaling. In conclusion, mERα signaling can modulate SERM responses in a tissue-specific manner. This novel knowledge increases the understanding of the mechanisms behind SERM effects and may thereby facilitate the development of new improved SERMs.


Assuntos
Receptor alfa de Estrogênio , Moduladores Seletivos de Receptor Estrogênico , Animais , Estradiol/farmacologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios/farmacologia , Feminino , Camundongos , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Transdução de Sinais
11.
Lupus ; 31(2): 143-154, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35062848

RESUMO

Osteoporosis is a common secondary complication in patients with systemic lupus erythematosus (SLE). Current osteoporosis treatment with bisphosphonates has some negative side effects and there is a lack of data regarding newer treatments options for SLE associated osteoporosis. The tissue-selective estrogen complex (TSEC) containing conjugated estrogens and the selective estrogen receptor modulator bazedoxifene (Bza) is approved for treatment of postmenopausal vasomotor symptoms and prevention of osteoporosis. However, it has not been evaluated for treatment of osteoporosis in postmenopausal SLE patients. Ovariectomized MRL/lpr mice constitute a model for postmenopausal lupus that can be used for osteoporosis studies. We used this model in a set of experiments where the mice were treated with different doses of 17ß-estradiol-3-benzoate (E2), Bza, or TSEC (E2 plus Bza), administered in the early or late phases of disease development. The skeleton was analyzed by dual-energy X-ray absorptiometry, peripheral quantitative computed tomography, and high-resolution microcomputed tomography. The lupus disease was assessed by determination of proteinuria, hematuria, and lupus disease markers in serum. Treatment with medium dose TSEC administered in early disease protected ovariectomized MRL/lpr mice from trabecular bone loss, while there were no differences in lupus disease parameters between treatments. This is the first experimental study to investigate TSEC as a potential new therapy for osteoporosis in postmenopausal SLE.


Assuntos
Lúpus Eritematoso Discoide , Lúpus Eritematoso Sistêmico , Osteoporose , Animais , Estrogênios/química , Estrogênios Conjugados (USP)/química , Humanos , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Camundongos , Camundongos Endogâmicos MRL lpr , Osteoporose/induzido quimicamente , Osteoporose/tratamento farmacológico , Microtomografia por Raio-X
12.
F1000Res ; 10: 809, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868559

RESUMO

Estrogens are important regulators of body physiology and have major effects on metabolism, bone, the immune- and central nervous systems. The specific mechanisms underlying the effects of estrogens on various cells, tissues and organs are unclear and mouse models constitute a powerful experimental tool to define the physiological and pathological properties of estrogens. Menopause can be mimicked in animal models by surgical removal of the ovaries and replacement therapy with 17ß-estradiol in ovariectomized (OVX) mice is a common technique used to determine specific effects of the hormone. However, these studies are complicated by the non-monotonic dose-response of estradiol, when given as therapy. Increased knowledge of how to distribute estradiol in terms of solvent, dose, and administration frequency, is required in order to accurately mimic physiological conditions in studies where estradiol treatment is performed. In this study, mice were OVX and treated with physiological doses of 17ß-estradiol-3-benzoate (E2) dissolved in miglyol or PBS. Subcutaneous injections were performed every 4 days to resemble the estrus cycle in mice. Results show that OVX induces an osteoporotic phenotype, fat accumulation and impairment of the locomotor ability, as expected. Pulsed administration of physiological doses of E2 dissolved in miglyol rescues the phenotypes induced by OVX. However, when E2 is dissolved in PBS the effects are less pronounced, possibly due to rapid wash out of the steroid.


Assuntos
Terapia de Reposição de Estrogênios , Estrogênios , Animais , Sistema Nervoso Central , Feminino , Terapia de Reposição Hormonal , Humanos , Camundongos , Ovariectomia
13.
Sci Rep ; 11(1): 14177, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238965

RESUMO

Obesity has previously been thought to protect bone since high body weight and body mass index are associated with high bone mass. However, some more recent studies suggest that increased adiposity negatively impacts bone mass. Here, we aimed to test whether acute loss of adipose tissue, via adipocyte apoptosis, alters bone mass in age-related obese mice. Adipocyte apoptosis was induced in obese male FAT-ATTAC mice through AP20187 dimerizer-mediated activation of caspase 8 selectively in adipocytes. In a short-term experiment, dimerizer was administered to 5.5 month-old mice that were terminated 2 weeks later. At termination, the total fat mass weighed 58% less in dimerizer-treated mice compared with vehicle-treated controls, but bone mass did not differ. To allow for the detection of long-term effects, we used 9-month-old mice that were terminated six weeks after dimerizer administration. In this experiment, the total fat mass weighed less (- 68%) in the dimerizer-treated mice than in the controls, yet neither bone mass nor biomechanical properties differed between groups. Our findings show that adipose tissue loss, despite the reduced mechanical loading, does not affect bone in age-related obese mice. Future studies are needed to test whether adipose tissue loss is beneficial during more severe obesity.


Assuntos
Adiposidade , Osso e Ossos/patologia , Adipócitos/patologia , Animais , Apoptose , Biomarcadores/sangue , Fenômenos Biomecânicos , Células da Medula Óssea/patologia , Remodelação Óssea , Contagem de Linfócitos , Camundongos Transgênicos , Tamanho do Órgão , Baço/patologia
14.
Scand J Immunol ; 93(5): e13009, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33320370

RESUMO

Immunoglobulin G (IgG) is important in clearance and recognition of previously presented antigens and after activation, IgGs can interact with the Fc gamma receptors (FcγRs) on haematopoietic cells, including bone-resorbing osteoclasts. The pathogenicity of IgG, that is the ability to elicit stimulatory effects via FcγRs, can be modulated by attachment of sugar moieties, including sialic acids. Human IgGs and autoantibodies are associated with bone loss in autoimmune disease. However, the impact of polyclonal murine IgG via FcγRs on bone loss is poorly understood. Here, we investigate if heat-aggregated activated murine polyclonal IgG complexes have any direct effects on murine osteoclasts and if they modulate arthritis-mediated bone loss. Using cell cultures of murine osteoclasts, we show that IgG complexes without sialic acids (de-IgG complexes) enhance receptor activator of nuclear factor kappa-Β ligand (RANKL)-stimulated osteoclastogenesis, an effect associated with increased FcγRIII expression. Using an in vivo model of arthritis-mediated bone loss, where IgG complexes were injected into arthritic knees, no effect on the severity of arthritis or the degree of arthritis-mediated bone loss was detected. Interestingly, injection of de-IgG complexes into non-arthritic knees increased osteoclast formation and enhanced bone erosions. Our findings show that activated de-IgG complexes have no additive effect on arthritis-mediated bone loss. However, de-IgG complexes potentiate murine osteoclastogenesis and enhance local bone erosion in non-arthritic bones, further confirming the link between the adaptive immune system and bone.


Assuntos
Artrite Experimental/patologia , Reabsorção Óssea/patologia , Imunoglobulina G/imunologia , Osteogênese/fisiologia , Receptores de IgG/imunologia , Animais , Artrite Experimental/imunologia , Reabsorção Óssea/imunologia , Feminino , Imunoglobulina G/química , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos/citologia , Osteoclastos/metabolismo , Ligante RANK/metabolismo , Receptores de IgG/química , Ácidos Siálicos/metabolismo
15.
Am J Physiol Endocrinol Metab ; 320(1): E160-E168, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33225718

RESUMO

Mutation of arginine 264 in ERα has been shown to abrogate rapid membrane ERα-mediated endothelial effects. Our novel finding that mutation of R264 is dispensable for ERα-mediated skeletal effects supports the concept that R264 determines tissue specificity of ERα. Estrogen protects against bone loss but is not a suitable treatment due to adverse effects in other tissues. Therefore, increased knowledge regarding estrogen signaling in estrogen-responsive tissues is warranted to aid the development of bone-specific estrogen treatments. Estrogen receptor-α (ERα), the main mediator of estrogenic effects in bone, is widely subjected to posttranslational modifications (PTMs). In vitro studies have shown that methylation at site R260 in the human ERα affects receptor localization and intracellular signaling. The corresponding amino acid R264 in murine ERα has been shown to have a functional role in endothelium in vivo, although the methylation of R264 in the murine gene is yet to be empirically demonstrated. The aim of this study was to investigate whether R264 in ERα is involved in the regulation of the skeleton in vivo. Dual-energy X-ray absorptiometry (DEXA) analysis at 3, 6, 9, and 12 mo of age showed no differences in total body areal bone mineral density (BMD) between R264A and wild type (WT) in either female or male mice. Furthermore, analyses using computed tomography (CT) demonstrated that trabecular bone mass in tibia and vertebra and cortical thickness in tibia were similar between R264A and WT mice. In addition, R264A females displayed a normal estrogen treatment response in trabecular bone mass as well as in cortical thickness. Furthermore, uterus, thymus, and adipose tissue responded similarly in R264A and WT female mice after estrogen treatment. In conclusion, our novel finding that mutation of R264 in ERα does not affect the regulation of the skeleton, together with the known role of R264 for ERα-mediated endothelial effects, supports the concept that R264 determines tissue specificity of ERα.NEW & NOTEWORTHY Mutation of arginine 264 in ERα has been shown to abrogate rapid membrane ERα-mediated endothelial effects. Our novel finding that mutation of R264 is dispensable for ERα-mediated skeletal effects supports the concept that R264 determines tissue specificity of ERα.


Assuntos
Arginina/genética , Arginina/fisiologia , Osso e Ossos/fisiologia , Receptor alfa de Estrogênio/genética , Absorciometria de Fóton , Envelhecimento/fisiologia , Animais , Densidade Óssea , Osso e Ossos/diagnóstico por imagem , Endotélio/metabolismo , Estrogênios/farmacologia , Feminino , Metilação , Camundongos , Tamanho do Órgão/genética , Ovariectomia , Coluna Vertebral/química , Coluna Vertebral/metabolismo , Tíbia/química , Tíbia/metabolismo , Tomografia Computadorizada por Raios X
16.
FASEB J ; 34(12): 15991-16002, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33067917

RESUMO

Estrogen treatment increases bone mass and reduces fat mass but is associated with adverse effects in postmenopausal women. Knowledge regarding tissue-specific estrogen signaling is important to aid the development of new tissue-specific treatments. We hypothesized that the posttranslational modification phosphorylation in estrogen receptor alpha (ERα) may modulate ERα activity in a tissue-dependent manner. Phosphorylation of site S122 in ERα has been shown in vitro to affect ERα activity, but the tissue-specific role in vivo is unknown. We herein developed and phenotyped a novel mouse model with a point mutation at the phosphorylation site 122 in ERα (S122A). Female S122A mice had increased fat mass and serum insulin levels but unchanged serum sex steroid levels, uterus weight, bone mass, thymus weight, and lymphocyte maturation compared to WT mice. In conclusion, phosphorylation site S122 in ERα has a tissue-dependent role with an impact specifically on fat mass in female mice. This study is the first to demonstrate in vivo that a phosphorylation site in a transactivation domain in a nuclear steroid receptor modulates the receptor activity in a tissue-dependent manner.


Assuntos
Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Fosforilação/genética , Animais , Densidade Óssea/genética , Osso e Ossos/metabolismo , Estrogênios/genética , Estrogênios/metabolismo , Feminino , Insulina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho do Órgão/genética , Mutação Puntual/genética , Transdução de Sinais/genética
17.
FASEB J ; 34(5): 7118-7126, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32239553

RESUMO

Sexually dimorphic bone structure emerges largely during puberty. Sex steroids are critical for peak bone mass acquisition in both genders. In particular, the biphasic effects of estrogens mediate the skeletal sexual dimorphism. However, so far the stimulatory vs inhibitory actions of estrogens on bone mass are not fully explained by direct effects on bone cells. Recently, it has become evident that there is possible neuroendocrine action of estrogen receptor alpha (ERα) on the skeleton. Based on these considerations, we hypothesized that neuronal ERα-signaling may contribute to the skeletal growth during puberty. Here, we generated mice with tamoxifen-inducible Thy1-Cre mediated ERα inactivation during late puberty specifically in extrahypothalamic neurons (N-ERαKO). Inactivation of neuronal ERα did not alter the body weight in males, whereas N-ERαKO females exhibited a higher body weight and increased body and bone length compared to their control littermates at 16 weeks of age. Ex vivo microCT analysis showed increased radial bone expansion of the midshaft femur in female N-ERαKO along with higher serum levels of insulin-like growth factor (IGF)-1 as well as IGF-binding protein (IGFBP)-3. Furthermore, the 3-point bending test revealed increased bone strength in female N-ERαKO. In contrast, inactivation of neuronal ERα had no major effect on bone growth in males. In conclusion, we demonstrate that central ERα-signaling limits longitudinal bone growth and radial bone expansion specifically in females potentially by interacting with the GH/IGF-1 axis.


Assuntos
Desenvolvimento Ósseo/fisiologia , Receptor alfa de Estrogênio/metabolismo , Neurônios/metabolismo , Maturidade Sexual/fisiologia , Animais , Fenômenos Biomecânicos , Densidade Óssea/genética , Densidade Óssea/fisiologia , Desenvolvimento Ósseo/genética , Osso e Ossos/anatomia & histologia , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/fisiologia , Receptor alfa de Estrogênio/deficiência , Receptor alfa de Estrogênio/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Caracteres Sexuais , Maturidade Sexual/genética , Transdução de Sinais , Microtomografia por Raio-X
18.
Am J Physiol Endocrinol Metab ; 318(5): E646-E654, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32125882

RESUMO

Mouse models with lifelong inactivation of estrogen receptor-α (ERα) show that ERα is the main mediator of estrogenic effects in bone, thymus, uterus, and fat. However, ERα inactivation early in life may cause developmental effects that confound the adult phenotypes. To address the specific role of adult ERα expression for estrogenic effects in bone and other nonskeletal tissues, we established a tamoxifen-inducible ERα-inactivated model by crossing CAGG-Cre-ER and ERαflox/flox mice. Tamoxifen-induced ERα inactivation after sexual maturation substantially reduced ERα mRNA levels in cortical bone, trabecular bone, thymus, uterus, gonadal fat, and hypothalamus, in CAGG-Cre-ERαflox/flox (inducible ERαKO) compared with ERαflox/flox (control) mice. 17ß-estradiol (E2) treatment increased trabecular bone volume fraction (BV/TV), cortical bone area, and uterine weight, while it reduced thymus weight and fat mass in ovariectomized control mice. The estrogenic responses were substantially reduced in inducible ERαKO mice compared with control mice on BV/TV (-67%), uterine weight (-94%), thymus weight (-70%), and gonadal fat mass (-94%). In contrast, the estrogenic response on cortical bone area was unaffected in inducible ERαKO compared with control mice. In conclusion, using an inducible ERαKO model, not confounded by lack of ERα during development, we demonstrate that ERα expression in sexually mature female mice is required for normal E2 responses in most, but not all, tissues. The finding that cortical, but not trabecular bone, responds normally to E2 treatment in inducible ERαKO mice strengthens the idea of cortical and trabecular bone being regulated by estrogen via different mechanisms.


Assuntos
Densidade Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Útero/efeitos dos fármacos , Animais , Osso e Ossos/metabolismo , Receptor alfa de Estrogênio/genética , Feminino , Camundongos , Camundongos Transgênicos , Tamanho do Órgão/efeitos dos fármacos , Ovariectomia , Timo/efeitos dos fármacos , Timo/metabolismo , Útero/metabolismo
19.
Endocr Connect ; 8(9): 1302-1309, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31434056

RESUMO

Estrogens may affect bone growth locally or systemically via the known estrogen receptors ESR1, ESR2 and G protein-coupled estrogen receptor 1 (GPER1). Mouse and human growth plate chondrocytes have been demonstrated to express GPER1 and ablation of this receptor increased bone length in mice. Therefore, GPER1 is an attractive target for therapeutic modulation of bone growth, which has never been explored. To investigate the effects of activated GPER1 on the growth plate, we locally exposed mouse metatarsal bones to different concentrations of the selective GPER1 agonist G1 for 14 days ex vivo. The results showed that none of the concentrations of G1 had any direct effect on metatarsal bone growth when compared to control. To evaluate if GPER1 stimulation may systemically modulate bone growth, ovariectomized C57BL/6 mice were treated with G1 or ß-estradiol (E2). Similarly, G1 did not influence tibia and femur growth in treated mice. As expected, E2 treatment suppressed bone growth in vivo. We conclude that ligand stimulation of GPER1 does not influence bone growth in mice.

20.
J Endocrinol ; 237(2): 113-122, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29530924

RESUMO

Substantial progress has been made in the therapeutic reduction of vertebral fracture risk in patients with osteoporosis, but non-vertebral fracture risk has been improved only marginally. Human genetic studies demonstrate that the WNT16 locus is a major determinant of cortical bone thickness and non-vertebral fracture risk and mouse models with life-long Wnt16 inactivation revealed that WNT16 is a key regulator of cortical thickness. These studies, however, could not exclude that the effect of Wnt16 inactivation on cortical thickness might be caused by early developmental and/or growth effects. To determine the effect of WNT16 specifically on adult cortical bone homeostasis, Wnt16 was conditionally ablated in young adult and old mice through tamoxifen-inducible Cre-mediated recombination using CAG-Cre-ER; Wnt16flox/flox (Cre-Wnt16flox/flox) mice. First, 10-week-old Cre-Wnt16flox/flox and Wnt16flox/flox littermate control mice were treated with tamoxifen. Four weeks later, Wnt16 mRNA levels in cortical bone were reduced and cortical thickness in femur was decreased in Cre-Wnt16flox/flox mice compared to Wnt16flox/flox mice. Then, inactivation of Wnt16 in 47-week-old mice (evaluated four weeks later) resulted in a reduction of Wnt16 mRNA levels, cortical thickness and cortical bone strength with no effect on trabecular bone volume fraction. Mechanistic studies demonstrated that the reduced cortical bone thickness was caused by a combination of increased bone resorption and reduced periosteal bone formation. In conclusion, WNT16 is a crucial regulator of cortical bone thickness in young adult and old mice. We propose that new treatment strategies targeting the adult regulation of WNT16 might be useful to reduce fracture risk at cortical bone sites.


Assuntos
Envelhecimento/fisiologia , Densidade Óssea/genética , Osso Cortical/anatomia & histologia , Proteínas Wnt/genética , Proteínas Wnt/fisiologia , Animais , Osso Cortical/fisiologia , Feminino , Resistência à Flexão , Fraturas Ósseas/genética , Fraturas Ósseas/metabolismo , Inativação Gênica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Maturidade Sexual/fisiologia , Transfecção/métodos , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...