Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 337: 661-675, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34271034

RESUMO

Diffusion cells are routinely used in pharmacology to measure the permeation of pharmaceutical compounds and contaminants across membranes (biological or synthetic). They can also be used to study drug release from excipients. The device is made of a donor (DC) and an acceptor (AC) compartment, separated by a membrane. Usually, permeation of molecules across membranes is measured by sampling from the AC at different time points. However, this process disturbs the equilibrium of the cell. Furthermore, analytical techniques used in association with diffusion cells sometimes lack either accuracy, sensitivity, or both. This work reports on the development of nuclear imaging - compatible diffusion cells. The cell is made of a polymer transparent to high-energy photons typically detected in positron emission tomography (PET). It was tested in a finite-dose set-up experiment with a pre-clinical PET system. Porous cellulose membranes (3.5, 25 and 300 kDa), a common excipient in pharmacology, as well as for dialysis membranes, were used as test membranes. The radioisotope 89Zr chelated with deferoxamine B (DFO; 0.65 kDa), was used as an imaging probe (7-10 MBq; 0.2-0.3 nMol 89Zr-DFO). In medicine, DFO is also commonly used for iron removal treatments and pharmacological formulations often require the association of this molecule with cellulose. Permeation profiles were obtained by measuring the radioactivity in the DC and AC for up to 2 weeks. The kinetic profiles were used to extract lag time, influx, and diffusion coefficients of DFO across porous cellulose membranes. A sensitivity threshold of 0.005 MBq, or 3.4 fmol of 89Zr-DFO, was revealed. The lag time to permeation (τ) measured in the AC compartment, was found to be 1.33, 0.5, and 0.19 h with 3.5, 25, and 300 kDa membranes, respectively. Diffusion coefficients of 3.65 × 10-6, 8.33 × 10-6, and 4.74 × 10-5 cm2 h-1 where revealed, with maximal pseudo steady-state influx values (Jpss) of 6.55 × 10-6, 1.76 × 10-5, and 1.29 × 10-5 nmol cm-2 h-1. This study confirms the potential of the technology for monitoring molecular diffusion and release processes at low concentrations, high sensitivities, in real time and in a visual manner.


Assuntos
Desferroxamina , Zircônio , Tomografia por Emissão de Pósitrons , Radioisótopos , Diálise Renal , Distribuição Tecidual
2.
ACS Nano ; 12(3): 2482-2497, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29498821

RESUMO

Gold nanoparticles (Au NPs) distributed in the vicinity of low-dose rate (LDR) brachytherapy seeds could multiply their efficacy thanks to the secondary emissions induced by the photoelectric effect. Injections of radioactive LDR gold nanoparticles (LDR Au NPs), instead of conventional millimeter-size radioactive seeds surrounded by Au NPs, could further enhance the dose by distributing the radioactivity more precisely and homogeneously in tumors. However, the potential of LDR Au NPs as an emerging strategy to treat cancer is strongly dependent on the macroscopic diffusion of the NPs in tumors, as well as on their microscopic internalization within the cells. Understanding the relationship between interstitial and intracellular distribution of NPs, and the outcomes of dose deposition in the cancer tissue is essential for considering future applications of radioactive Au NPs in oncology. Here, LDR Au NPs (103Pd:Pd@Au-PEG NPs) were injected in prostate cancer tumors. The particles were visualized at time-points by computed tomography imaging ( in vivo), transmission electron microscopy ( ex vivo), and optical microscopy ( ex vivo). These data were used in a Monte Carlo-based dosimetric model to reveal the dose deposition produced by LDR Au NPs both at tumoral and cellular scales. 103Pd:Pd@Au-PEG NPs injected in tumors produce a strong dose enhancement at the intracellular level. However, energy deposition is mainly confined around vesicles filled with NPs, and not necessarily close to the nuclei. This suggests that indirect damage caused by the production of reactive oxygen species might be the leading therapeutic mechanism of tumor growth control, over direct damage to the DNA.


Assuntos
Ouro/administração & dosagem , Nanopartículas Metálicas/administração & dosagem , Paládio/administração & dosagem , Neoplasias da Próstata/radioterapia , Animais , Braquiterapia/métodos , Ouro/farmacocinética , Ouro/uso terapêutico , Humanos , Injeções Intralesionais , Masculino , Nanopartículas Metálicas/análise , Nanopartículas Metálicas/uso terapêutico , Camundongos , Método de Monte Carlo , Células PC-3 , Paládio/farmacocinética , Paládio/uso terapêutico , Fótons , Neoplasias da Próstata/patologia , Radioisótopos/administração & dosagem , Radioisótopos/farmacocinética , Radioisótopos/uso terapêutico , Radiometria
3.
Adv Healthc Mater ; 6(4)2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28116855

RESUMO

Prostate cancer (PCa) is one of the leading causes of death among men. Low-dose brachytherapy is an increasingly used treatment for PCa, which requires the implantation of tens of radioactive seeds. This treatment causes discomfort; these implants cannot be removed, and they generate image artifacts. In this study, the authors report on intratumoral injections of radioactive gold nanoparticles (Au NPs) as an alternative to seeds. The particles (103 Pd:Pd@Au-PEG and 103 Pd:Pd@198 Au:Au-PEG; 10-14 nm Pd@Au core, 36-48 nm hydrodynamic diameter) are synthesized by a one-pot process and characterized by electron microscopy. Administrated as low volume (2-4 µL) single doses (1.6-1.7 mCi), the particles are strongly retained in PCa xenograft tumors, impacting on their growth rate. After 4 weeks, a tumor volume inhibition of 56% and of 75%, compared to the controls, is observed for 103 Pd:Pd@Au-PEG NPs and 103 Pd:Pd@198 Au:Au-PEG NPs, respectively. Skin necrosis is observed with 198 Au; therefore, Au NPs labeled with 103 Pd only are a more advisable choice. Overall, this is the first study confirming the impact of 103 Pd@Au NPs on tumor growth. This new brachytherapy procedure could allow tunable doses of radioactivity, administered with smaller needles than with the current technologies, and leading to fewer image artifacts.


Assuntos
Braquiterapia/métodos , Ouro , Nanopartículas , Paládio , Neoplasias da Próstata/radioterapia , Animais , Linhagem Celular Tumoral , Ouro/química , Ouro/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Nanopartículas/uso terapêutico , Paládio/química , Paládio/farmacologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Mater Chem B ; 4(39): 6413-6427, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32263450

RESUMO

In recent years, pulsed laser ablation in liquids (PLAL) has emerged as a new green chemistry method to produce different types of nanoparticles (NPs). It does not require the use of reducing or stabilizing agents, therefore enabling the synthesis of NPs with highly-pure surfaces. In this study, pure Au NPs were produced by PLAL in aqueous solutions, sterically stabilized using minimal PEG excess, and functionalized with manganese chelates to produce a dual CT/MRI contrast agent. The small hydrodynamic size (36.5 nm), low polydispersity (0.2) and colloidal stability of Au NPs@PEG-Mn2+ were demonstrated by DLS. The particles were further characterized by TEM, XPS, FTIR and 1H NMR to confirm the purity of the Au surfaces (i.e. free from the common residual chemicals found after NP synthesis) and the presence of the different surface molecules. The potential of these particles as contrast agents for CT/MRI was assessed in vivo (e.g. chicken embryo). Au NPs@PEG-Mn2+ also demonstrated strong blood retention for at least 90 minutes following intravenous injection in mouse models. The promising performance of PEGylated PLAL-synthesized Au NPs containing manganese chelates could open new possibilities for the production of purer dual imaging contrast agents based on Au colloids.

5.
Langmuir ; 31(27): 7633-43, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26086241

RESUMO

Progresses in cold atmospheric plasma technologies have made possible the synthesis of nanoparticles in aqueous solutions using plasma electrochemistry principles. In this contribution, a reactor based on microhollow cathodes and operating at atmospheric pressure was developed to synthesize iron-based nanoclusters (nanoparticles). Argon plasma discharges are generated at the tip of the microhollow cathodes, which are placed near the surface of an aqueous solution containing iron salts (FeCl2 and FeCl3) and surfactants (biocompatible dextran). Upon reaction at the plasma-liquid interface, reduction processes occur and lead to the nucleation of ultrasmall iron-based nanoclusters (IONCs). The purified IONCs were investigated by XPS and FTIR, which confirmed that the nucleated clusters contain a highly hydrated form of iron oxide, close to the stoichiometric constituents of α-FeOOH (goethite) or Fe5O3(OH)9 (ferrihydrite). Relaxivity values of r1 = 0.40 mM(-1) s(-1) and r2/r1 = 1.35 were measured (at 1.41 T); these are intermediate values between the relaxometric properties of superparamagnetic iron oxide nanoparticles used in medicine (USPIO) and those of ferritin, an endogenous contrast agent. Plasma-synthesized IONCs were injected into the mouse model and provided positive vascular signal enhancement in T1-w. MRI for a period of 10-20 min. Indications of rapid and strong elimination through the urinary and gastrointestinal tracts were also found. This study is the first to report on the development of a compact reactor suitable for the synthesis of MRI iron-based contrast media solutions, on site and upon demand.


Assuntos
Meios de Contraste/química , Técnicas Eletroquímicas , Compostos Férricos/química , Nanopartículas/química , Animais , Meios de Contraste/síntese química , Meios de Contraste/farmacocinética , Compostos Férricos/síntese química , Compostos Férricos/farmacocinética , Camundongos , Tamanho da Partícula , Soluções , Propriedades de Superfície , Água/química
6.
Tissue Eng Part C Methods ; 21(7): 693-704, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25549069

RESUMO

Adipose tissue (AT) substitutes are being developed to answer the strong demand in reconstructive surgery. To facilitate the validation of their functional performance in vivo, and to avoid resorting to excessive number of animals, it is crucial at this stage to develop biomedical imaging methodologies, enabling the follow-up of reconstructed AT substitutes. Until now, biomedical imaging of AT substitutes has scarcely been reported in the literature. Therefore, the optimal parameters enabling good resolution, appropriate contrast, and graft delineation, as well as blood perfusion validation, must be studied and reported. In this study, human adipose substitutes produced from adipose-derived stem/stromal cells using the self-assembly approach of tissue engineering were implanted into athymic mice. The fate of the reconstructed AT substitutes implanted in vivo was successfully followed by magnetic resonance imaging (MRI), which is the imaging modality of choice for visualizing soft ATs. T1-weighted images allowed clear delineation of the grafts, followed by volume integration. The magnetic resonance (MR) signal of reconstructed AT was studied in vitro by proton nuclear magnetic resonance ((1)H-NMR). This confirmed the presence of a strong triglyceride peak of short longitudinal proton relaxation time (T1) values (200 ± 53 ms) in reconstructed AT substitutes (total T1=813 ± 76 ms), which establishes a clear signal difference between adjacent muscle, connective tissue, and native fat (total T1 ~300 ms). Graft volume retention was followed up to 6 weeks after implantation, revealing a gradual resorption rate averaging at 44% of initial substitute's volume. In addition, vascular perfusion measured by dynamic contrast-enhanced-MRI confirmed the graft's vascularization postimplantation (14 and 21 days after grafting). Histological analysis of the grafted tissues revealed the persistence of numerous adipocytes without evidence of cysts or tissue necrosis. This study describes the in vivo grafting of human adipose substitutes devoid of exogenous matrix components, and for the first time, the optimal parameters necessary to achieve efficient MRI visualization of grafted tissue-engineered adipose substitutes.


Assuntos
Tecido Adiposo/citologia , Imageamento por Ressonância Magnética/métodos , Engenharia Tecidual , Animais , Feminino , Humanos , Camundongos , Camundongos Nus , Espectroscopia de Prótons por Ressonância Magnética
7.
J Mater Chem B ; 3(5): 748-758, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32262165

RESUMO

Mesoporous silica nanoparticles (MSNs) are being developed as drug delivery vectors. Biomedical imaging (MRI and PET) enables their tracking in vivo, provided their surface is adequately grafted with imaging probes (metal chelates). However, MSNs are characterized by huge specific surfaces, and high-quality metal chelate anchoring procedures must be developed and validated, to demonstrate that their detection in vivo is associated to the presence of nanoparticles and not to detached metal chelates. MCM-48 nanospheres (M48SNs, 150 nm diam., 3-D pore geometry) were synthesized and functionalized with diethylenetriaminepentaacetic acid (DTPA). The strong grafting of DTPA was confirmed by 29Si MAS-NMR, XPS, FTIR and TGA. The particles were labeled with paramagnetic ions Gd3+ (for MRI) as well as radioactive ions 64Cu2+ (for PET; half-life: 12.7 h). Gd3+-DTPA-M48SNs formed a stable colloid in saline media for at least 6 months, without any sign of aggregation. The relaxometric properties were measured at various magnetic fields. The strength of DTPA binding at the surface of MSNs was also assessed in vivo, by injecting mice (i.v.) with Gd3+/64Cu2+-DTPA-M48SNs. Vascular retention and urinary clearance were monitored by MRI, whereas the PET modality provided dynamic and quantitative assessment of biodistribution and blood/organ clearance. No significant 64Cu activity was detectable in the bladder. The study confirmed the very limited detachment of DTPA from M48SNs cores once injected in vivo. The transit of MSNs through the liver and intestinal tract, does not lead to evidence of Gd3+/64Cu2+-DTPA in the urine. This physico-chemical and biodistribution study confirms the quality of DTPA attachment at the surface of the particles, necessary to allow further development of PET/MRI-assisted MSN-vectorized drug delivery procedures.

8.
Nanoscale ; 5(23): 11499-511, 2013 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-24178890

RESUMO

Mesoporous silica nanoparticles (MSNs) are used in drug delivery and cell tracking applications. As Mn(2+) is already implemented as a "positive" cell contrast agent in preclinical imaging procedures (in the form of MnCl2 for neurological studies), the introduction of Mn in the porous network of MSNs would allow labelling cells and tracking them using MRI. These particles are in general internalized in endosomes, an acidic environment with high saline concentration. In addition, the available MSN porosity could also serve as a carrier to deliver medical/therapeutic substances through the labelled cells. In the present study, manganese oxide was introduced in the porous network of MCM-48 silica nanoparticles (Mn-M48SNs). The particles exhibit a narrow size distribution (~140 nm diam.) and high porosity (~60% vol.), which was validated after insertion of Mn. The resulting Mn-M48SNs were characterized by TEM, N2 physisorption, and XRD. Evidence was found with H2-TPR, and XPS characterization, that Mn(II) is the main oxidation state of the paramagnetic species after suspension in water, most probably in the form of Mn-OOH. The colloidal stability as a function of time was confirmed by DLS in water, acetate buffer and cell culture medium. In NMR data, no significant evidence of Mn(2+) leaching was found in Mn-M48SNs in acidic water (pH 6), up to 96 hours after suspension. High longitudinal relaxivity values of r1 = 8.4 mM(-1) s(-1) were measured at 60 MHz and 37 °C, with the lowest relaxometric ratios (r2/r1 = 2) reported to date for a Mn-MSN system. Leukaemia cells (P388) were labelled with Mn-M48SNs and nanoparticle cell internalization was confirmed by TEM. Finally, MRI contrast enhancement provided by cell labelling with escalated incubation concentrations of Mn-M48SNs was quantified at 1 T. This study confirmed the possibility of efficiently confining Mn into M48SNs using incipient wetness, while maintaining an open porosity and relatively high pore volume. Because these Mn-labelled M48SNs express strong "positive" contrast media properties at low concentrations, they are potentially applicable for cell tracking and drug delivery methodologies.


Assuntos
Cloretos/química , Meios de Contraste/química , Compostos de Manganês/química , Nanopartículas/química , Dióxido de Silício/química , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Meios de Contraste/metabolismo , Meios de Contraste/toxicidade , Hidrogênio/química , Concentração de Íons de Hidrogênio , Imageamento por Ressonância Magnética , Camundongos , Nanopartículas/toxicidade , Oxirredução , Porosidade , Propriedades de Superfície , Temperatura , Água/química
9.
Adv Healthc Mater ; 2(11): 1478-88, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23666643

RESUMO

Near-infrared (NIR)-to-NIR upconverting NaY(Gd)F4 :Tm(3+) ,Yb(3+) paramagnetic nanoparticles (NPs) are efficiently detected by NIR imaging techniques. As they contain Gd(3+) ions, they also provide efficient "positive" contrast in magnetic resonance imaging (MRI). Water-dispersible small (≈25 nm, "S-") and ultrasmall (<5 nm diam., "US-") NaY(Gd)F4 :Tm(3+) ,Yb(3+) NPs are synthesized by thermal decomposition and capped with citrate. The surface of citrate-coated US-NPs shows sodium depletion and high Gd elemental ratios, as confirmed by a comparative X-ray photoelectron spectroscopy (XPS)/neutron absorption analysis study. US-NaGd0.745 F4 :Tm0.005 ,Yb0.25 NPs have hydrodynamic diameters close to that measured by TEM, with the lowest relaxometric ratios (r2 /r1 = 1.18) reported for NaGdF4 nanoparticle suspensions (r1 = 3.37 mM(-1) s(-1) at 1.4 T and 37 °C). Strong relaxivity peaks in the range of 20 (0.47 T) - 300 MHz (7.05 T) are revealed in nuclear magnetic resonance dispersion profiles, with high r2 /r1 ratios at increasing field strengths for S-NPs. This indicates the superiority of US-NPs over S-NPs for achieving high positive contrast at clinical MRI field strengths. I.-v. injected citrate-coated US-NPs evidence long blood retention times (>90 min) in mice. Biodistribution studies (48 h, 8 d) show elimination through the reticuloendothelial and urinary systems, similarly to other citrate-capped US-NP systems. In summary, upconverting NaY(Gd)F4 :Tm(3+) ,Yb(3+) nanoparticles have promising luminescent, relaxometric and blood-retention properties for dual MRI/optical imaging.


Assuntos
Vasos Sanguíneos/patologia , Fluoretos , Gadolínio , Imageamento por Ressonância Magnética , Nanopartículas , Imagem Óptica , Processamento de Sinais Assistido por Computador , Animais , Meios de Contraste , Camundongos , Nanopartículas/ultraestrutura , Espectroscopia Fotoeletrônica , Suspensões , Distribuição Tecidual
10.
Adv Healthc Mater ; 2(11): 1477, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24574195

RESUMO

Tripositive gadolinium-ion doped NIR-to-NIR upconverting paramagnetic nanoparticles are efficiently detected are NIR imaging techniques but can also provide efficient "positive" contrast in MRI. On page 1478 John A. Capobianco, Marc-André Fortin, and co-workers show that citrate-coated nanoparticles present the lowest relaxometric ratios reported for NaGdF4 nanoparticle suspensions. IV-injected nanoparticles evidence long blood retention times in mice while biodistribution studies show elimination through the reticuloendothelial and urinary systems.


Assuntos
Vasos Sanguíneos/patologia , Gadolínio , Imageamento por Ressonância Magnética , Nanopartículas , Imagem Óptica , Processamento de Sinais Assistido por Computador , Animais , Camundongos
11.
J Biomed Mater Res A ; 101(3): 694-703, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22941911

RESUMO

Intimal hyperplasia and thrombosis are responsible for the poor patency rates of small-diameter vascular grafts. These complications could be avoided by a rapid and strong adhesion of endothelial cells to the prosthetic surfaces, which typically consist of expanded polytetrafluoroethylene (PTFE) for small-diameter vessels. We have previously described two peptide micropatterning strategies that increase the endothelialization rates of PTFE. The micropatterns were generated either by inkjet printing 300 µm squares or by spraying 10.1 ± 0.1 µm diameter droplets of the CGRGDS cell adhesion peptide, while the remaining surface was functionalized using the CWQPPRARI cell migration peptide. We now directly compare these two micropatterning strategies and examine the effect of hydrodynamic stress on human saphenous vein endothelial cells grown on the patterned surfaces. No significant differences in cell adhesion were observed between the two micropatterning methods. When compared to unpatterned surfaces treated with a uniform mixture of the two peptides, the cell expansion was significantly higher on sprayed or printed surfaces after 9 days of static cell culture. In addition, after 6 h of exposure to hydrodynamic stress, the cell retention and cell cytoskeleton reorganization on the patterned surfaces was improved when compared to untreated or random treated surfaces. These results indicate that micropatterned surfaces lead to improved rates of PTFE endothelialization with higher resistance to hydrodynamic stress.


Assuntos
Prótese Vascular , Células Endoteliais/metabolismo , Peptídeos/química , Politetrafluoretileno/química , Veia Safena/metabolismo , Estresse Fisiológico , Adesão Celular , Proliferação de Células , Células Cultivadas , Citoesqueleto/metabolismo , Células Endoteliais/citologia , Humanos , Hidrodinâmica , Veia Safena/citologia
12.
J Phys Chem B ; 116(44): 13228-38, 2012 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-23030472

RESUMO

Manganese oxide (MnO) nanoparticles have been suggested as a promising "positive" MRI contrast agent for cellular and molecular studies. Mn-based contrast agents could enable T(1)-weighted quantitative cell tracking procedures in vivo based on signal enhancement. In this study, ultrasmall MnO particles were synthesized and coated with thiolated molecules (DMSA) and polyethylene glycol (PEG) to allow enhanced cell labeling properties and colloidal stability. This coating allowed the fabrication of individual ultrasmall nanoparticles of MnO (USPMnO) as well as of nanoaggregates of the same material (SPMnO). Particle size was measured by TEM and DLS. Physico-chemical properties were characterized by XPS and FTIR. The relaxometric properties of these aqueous suspensions were measured at various magnetic fields. The suspensions provided strong positive contrast enhancement in T(1)-weighted imaging due to high longitudinal relaxivities (r(1)) and low r(2)/r(1) ratios (USPMnO: r(1) = 3.4 ± 0.1 mM(-1)s(-1), r(2)/r(1) = 3.2; SPMnO: r(1) = 17.0 ± 0.5 mM(-1)s(-1), r(2)/r(1) = 4.0, at 1.41T). HT-1080 cancer cells incubated with the contrast agents were clearly visualized in MRI for Mn contents >1.1 pg Mn/cell. The viability of cells was not affected, contrarily to cells labeled with an equivalent concentration of Mn(2+) ions. A higher signal per cell was found for SPMnO-labeled compared with USPMnO-labeled cells, due to the higher relaxometric properties of the agglomerates. As a result, the "positive" signal enhancement effect is not significantly affected upon agglomeration of MnO particles in endosomes. This is a major requirement in the development of reliable cell tracking procedures using T(1)-weighted imaging sequences. This study confirms the potential of SPMnO and USPMnO to establish more quantitative cell tracking procedures with MRI.


Assuntos
Compostos de Manganês/química , Nanopartículas Metálicas/química , Óxidos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Meios de Contraste/química , Meios de Contraste/toxicidade , Humanos , Imageamento por Ressonância Magnética , Nanopartículas Metálicas/toxicidade , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Polietilenoglicóis/química , Compostos de Sulfidrila/química
13.
ACS Appl Mater Interfaces ; 4(9): 4506-15, 2012 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-22834680

RESUMO

Ultrasmall paramagnetic Gd(2)O(3) nanoparticles have been developed as contrast agents for molecular and cellular preclinical MRI procedures. These small particles (mean diameter <5 nm) have the highest Gd density of all paramagnetic contrast agents. They generate strong positive contrast enhancement in T(1)-weighted MRI. Signal enhancement is modulated by the interactions of water molecules with Gd, and very small particles provide the optimal surface-to-volume ratios necessary to reach high relaxivities. Conventional Gd(2)O(3) nanocrystal synthesis techniques, and subsequent polyethylene glycol (PEG) grafting procedures are usually time-consuming and recovery losses are also limitative. The present study reports on a new, fast, and efficient one-pot Gd(2)O(3) synthesis technique that provides PEGylated nanoparticles of very small size (mean diameter = 1.3 nm). Readily coated with PEG, the particles are colloidally stable in aqueous media and provide high longitudial relaxivities and small r(2)/r(1) ratios (r(1) = 14.2 mM(-1) s(-1) at 60 MHz; r(2)/r(1) = 1.20), ideal for T(1)-weighted MRI. In this study, F98 brain cancer cells (glioblastoma multiforme) were labeled with the contrast agent and implanted in vivo (mice brains). The labeled cells appeared positively contrasted at least 48 h after implantation. Each one of the implanted animals developed a brain tumor. The performance of PEG-Gd(2)O(3) was also compared with that of commercially available iron oxide nanoparticles. This study demonstrated that ultrasmall PEG-Gd(2)O(3) nanoparticles provide strong positive contrast enhancement in T(1)-weighted imaging, and allow the visualization of labeled cells implanted in vivo.


Assuntos
Meios de Contraste/química , Gadolínio/química , Nanopartículas Metálicas/química , Polietilenoglicóis/química , Animais , Neoplasias Encefálicas/diagnóstico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Rastreamento de Células , Glioblastoma/diagnóstico , Imageamento por Ressonância Magnética , Masculino , Nanopartículas Metálicas/toxicidade , Camundongos , Tamanho da Partícula , Ratos , Transplante Heterólogo
14.
Contrast Media Mol Imaging ; 6(4): 209-18, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21861281

RESUMO

The majority of contrast agents used in magnetic resonance imaging (MRI) is based on the rare-earth element gadolinium. Gadolinium-based nanoparticles could find promising applications in pre-clinical diagnostic procedures of certain types of cancer, such as glioblastoma multiforme. This is one of the most malignant, lethal and poorly accessible forms of cancer. Recent advances in colloidal nanocrystal synthesis have led to the development of ultra-small crystals of gadolinium oxide (US-Gd(2)O(3), 2-3 nm diameter). As of today, this is the smallest and the densest of all Gd-containing nanoparticles. Cancer cells labeled with a sufficient quantity of this compound appear bright in T(1)-weighted MRI images. Here we demonstrate that US-Gd(2)O(3) can be used to label GL-261 glioblastoma multiforme cells, followed by localization and visualization in vivo using MRI. Very high amounts of Gd are efficiently internalized and retained in cells, as confirmed with TEM and ICP-MS. Labeled cells were visualized in vivo at 1.5 T using the chicken embryo model. This is one more step toward the development of "positively contrasted" cell tracking procedures with MRI.


Assuntos
Neoplasias Encefálicas/diagnóstico , Meios de Contraste , Gadolínio , Imageamento por Ressonância Magnética/métodos , Nanopartículas/química , Animais , Embrião de Galinha , Meios de Contraste/química , Gadolínio/química , Humanos , Microscopia Eletrônica de Transmissão
15.
Macromol Biosci ; 10(3): 307-16, 2010 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-19946859

RESUMO

Collagen-based vascular substitutes represent in VTE a valid alternative for the replacement of diseased small-calibre blood vessels. In this study, collagen gel-based scaffolds were crosslinked combining modulation of pH and UV-C radiation. The effects on the mechanical properties, on the molecular structure and on cell viability and morphology were investigated. The mechanical response increased as a function of pH or UV-C dose and strongly depended on the test speed. Collagen molecular conformation resulted only slightly modified. While cell adhesion was not significantly altered, cell proliferation partially decreased in function of pH and UV-C. These findings suggest that UV-C treated collagen gels can represent an adequate substrate for VTE applications.


Assuntos
Vasos Sanguíneos/fisiologia , Colágeno/farmacologia , Fenômenos Mecânicos , Conformação Molecular , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Raios Ultravioleta , Animais , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Fibroblastos/ultraestrutura , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Concentração de Íons de Hidrogênio/efeitos da radiação , Fenômenos Mecânicos/efeitos dos fármacos , Fenômenos Mecânicos/efeitos da radiação , Camundongos , Células NIH 3T3 , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier
16.
Biotechnol Prog ; 24(4): 884-9, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19194897

RESUMO

Cardiovascular diseases are increasingly becoming the main cause of death all over the world, leading to an increase in the economical and social burden. Vascular tissue engineering (VTE) is paving its routes toward challenging applications, focused mainly on substitutions of small-diameter blood vessels (<6 mm). Native collagen, a natural biological material which possesses extraordinary properties in terms of biocompatibility, has been extensively investigated as a scaffold for VTE. However, collagen is mainly extracted from collagen-rich native natural tissues by different harsh chemical and physical treatments, resulting in a solution susceptible to be processed for the fabrication of supports. These treatments imply the destruction of the native organization of the collagen microstructure, thus resulting in a collagen-based support less resistant in terms of mechanical properties than the native one. Therefore, different approaches have been investigated to increase these mechanical properties. Although UV irradiation present a strong potential for efficient crosslinking collagen macromolecules, the undesirable effects of UV on cell activity still remain the main challenge to be overpassed. The aim of this study was to investigate the potential of UV radiation and glycation for the crosslinking of collagen gels, with particular concern to the cells and capacity of the cells to remodel the collagen structure.


Assuntos
Colágeno/química , Fibroblastos/fisiologia , Fibroblastos/efeitos da radiação , Doses de Radiação , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Sobrevivência Celular/efeitos da radiação , Matriz Extracelular , Camundongos , Células NIH 3T3 , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...