Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(36): 32432-32443, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37720753

RESUMO

This paper presents a theoretical and experimental evaluation of benzidine derivatives as electroactive molecules for organic redox flow batteries. These redox indicators are novel electroactive materials that can perform multielectron transfers in aqueous media. We performed the synthesis, electrochemical characterization, and theoretical study of the dimer of sodium 4-diphenylamine sulfonate, a benzidine derivative with high water solubility properties. The Pourbaix diagram of the dimer shows a bielectronic process at highly acidic pH values (≤ 0.9) and two single-electron transfers in a pH range from 0 to 9. The dimer was prepared in situ and tested on a neutral electrochemical flow cell as a stability diagnostic. To improve cell performance, we calculate and calibrate, with experimental data, the Pourbaix diagrams of benzidine derivatives using different substitution patterns and functional groups. A screening process allowed the selection of those derivatives with a bielectronic process in the entire pH window or at acidic/neutral pH values. Given the redox potential difference, they can be potential catholytes or anolytes in a flow cell. The couples formed with the final candidates can generate a theoretical cell voltage of 0.60 V at pH 0 and up to 0.68 V at pH 7. These candidate molecules could be viable as electroactive materials for a full-organic redox flow battery.

2.
Phys Chem Chem Phys ; 21(28): 15823-15832, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31282521

RESUMO

Compounds from the 2,2'-bipyridine molecular family were investigated for use as redox-active materials in organic flow batteries. For 156 2,2'-bipyridine derivatives reported in the academic literature, we calculated the redox potential, the pKa for the second deprotonation reaction, and the solubility in aqueous solutions. Using experimental data on a small subset of derivatives, we were able to calibrate our calculations. We find that functionalization with electron-withdrawing groups leads to an increase of the redox potential and to an increase of the molecular acidity (as expressed in a reduction of the pKa value for the second deprotonation step). Furthermore, calculations of solubility in water indicate that some of the studied derivatives have adequate solubility for flow battery applications. Based on an analysis of the phyisco-chemical properties of the 156 studied compounds, we down-select five molecules with carbonyl- and nitro-based functional groups, whose parameters are especially promising for potential applications as negative redox-active materials in organic flow batteries.

3.
ACS Omega ; 3(2): 2130-2140, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31458519

RESUMO

The Marcus-Hush theory has been successfully applied to describe and predict the activation barriers and hence the electron-transfer (ET) rates in several physicochemical and biological systems. This theory assumes that in the ET reaction, the geometry of the free Gibbs energy landscape is parabolic, with equal curvature near the local minimum for both reactants and products. In spite of its achievements, more realistic models have included the assumption of the two parabolas having not the same curvature. This situation is analyzed by the Nelsen's four-point method. As a benchmark to compare the Marcus-Hush approximation to a precise calculation of the excitation energy, we studied the non-ET process of the electronic excitation of the aluminum dimer that has two local minima (3∑g - and 3∏u electronic states) and allows to obtain analytically the Marcus-Hush nonsymmetric parameters. We appraise the ability of the Marcus-Hush formula to approximate the analytical results by using several averages of the two reorganization energies associated with the forward and backward transitions and analyze the error. It is observed that the geometric average minimizes the relative error and that the analytical case is recovered. The main results of this paper are obtained by the application of the Nelsen's four-point method to compute the reorganization energies of a large set of potential π-conjugated molecules proposed for organic photovoltaic devices using the above-mentioned averages for the Marcus-Hush formula. The activation energies obtained with the geometric average are significantly larger for some donor-acceptor pairs in comparison with the previously employed arithmetic average, their differences being suitable for experimental testing.

4.
Phys Chem Chem Phys ; 18(1): 436-47, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26616490

RESUMO

The effects of bath coupling on an interacting two-particle quantum system are studied using tools from information theory. Shannon entropies of the one (reduced) and two-particle distribution functions in position, momentum and separable phase-space are examined. Results show that the presence of the bath leads to a delocalization of the distribution functions in position space, and a localization in momentum space. This can be interpreted as a loss of information in position space and a gain of information in momentum space. The entropy sum of the system, in the presence of a bath, is shown to be dependent on the strength of the interparticle potential and also on the strength of the coupling to the bath. The statistical correlation between the particles, and its dependence on the bath and interparticle potential, is examined using mutual information. A stronger repulsive potential between particles, in the presence of the bath, yields a smaller correlation between the particles positions, and a larger one between their momenta.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...