Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood Adv ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598725

RESUMO

The t(1;19) translocation, which codes for the oncogenic fusion protein E2A (TCF3)-PBX1, is involved in acute lymphoblastic leukemia (ALL) and associated with a pre-B cell receptor (preBCR+) phenotype. Relapse in E2A-PBX1+ ALL patients frequently occurs in the central nervous system (CNS). Therefore, there is a medical need for the identification of CNS active regimens for the treatment of E2A-PBX1+/preBCR+ ALL. Using unbiased shRNA library screening approaches, we identified Bruton's tyrosine kinase (BTK) as a key gene involved in both proliferation and dasatinib sensitivity of E2A-PBX1+/preBCR+ ALL. Depletion of BTK by shRNAs resulted in decreased proliferation of dasatinib-treated E2A-PBX1+/preBCR+ cells compared with control-transduced cells. Moreover, combination of dasatinib with BTK inhibitors (BTKi) (ibrutinib, acalabrutinib or zanubrutinib) significantly decreased E2A-PBX1+/preBCR+ human and murine cell proliferation, reduced PLCG2 and BTK phosphorylation and total protein levels and increased disease-free survival of mice in secondary transplantation assays, reducing particularly CNS-leukemic infiltration. Hence, dasatinib with ibrutinib reduced pPLCG2 and pBTK in primary ALL patient samples, including E2A-PBX1+ ALLs. In summary, genetic depletion and pharmacological inhibition of BTK increase dasatinib effects in human and mouse E2A-PBX1+/preBCR+ ALL in most of performed assays, and the combination of dasatinib and BTKi is very effective in reducing CNS-infiltration of E2A-PBX1+/preBCR+ ALL cells in vivo.

2.
Cell Genom ; 3(3): 100276, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36950387

RESUMO

In contrast to mono- or biallelic loss of tumor-suppressor function, effects of discrete gene dysregulations, as caused by non-coding (epi)genome alterations, are poorly understood. Here, by perturbing the regulatory genome in mice, we uncover pervasive roles of subtle gene expression variation in cancer evolution. Genome-wide screens characterizing 1,450 tumors revealed that such quasi-insufficiency is extensive across entities and displays diverse context dependencies, such as distinct cell-of-origin associations in T-ALL subtypes. We compile catalogs of non-coding regions linked to quasi-insufficiency, show their enrichment with human cancer risk variants, and provide functional insights by engineering regulatory alterations in mice. As such, kilo-/megabase deletions in a Bcl11b-linked non-coding region triggered aggressive malignancies, with allele-specific tumor spectra reflecting gradual gene dysregulations through modular and cell-type-specific enhancer activities. Our study constitutes a first survey toward a systems-level understanding of quasi-insufficiency in cancer and gives multifaceted insights into tumor evolution and the tissue-specific effects of non-coding mutations.

3.
Genome Med ; 12(1): 99, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33218352

RESUMO

BACKGROUND: Tight regulatory loops orchestrate commitment to B cell fate within bone marrow. Genetic lesions in this gene regulatory network underlie the emergence of the most common childhood cancer, acute lymphoblastic leukemia (ALL). The initial genetic hits, including the common translocation that fuses ETV6 and RUNX1 genes, lead to arrested cell differentiation. Here, we aimed to characterize transcription factor activities along the B-lineage differentiation trajectory as a reference to characterize the aberrant cell states present in leukemic bone marrow, and to identify those transcription factors that maintain cancer-specific cell states for more precise therapeutic intervention. METHODS: We compared normal B-lineage differentiation and in vivo leukemic cell states using single cell RNA-sequencing (scRNA-seq) and several complementary genomics profiles. Based on statistical tools for scRNA-seq, we benchmarked a workflow to resolve transcription factor activities and gene expression distribution changes in healthy bone marrow lymphoid cell states. We compared these to ALL bone marrow at diagnosis and in vivo during chemotherapy, focusing on leukemias carrying the ETV6-RUNX1 fusion. RESULTS: We show that lymphoid cell transcription factor activities uncovered from bone marrow scRNA-seq have high correspondence with independent ATAC- and ChIP-seq data. Using this comprehensive reference for regulatory factors coordinating B-lineage differentiation, our analysis of ETV6-RUNX1-positive ALL cases revealed elevated activity of multiple ETS-transcription factors in leukemic cells states, including the leukemia genome-wide association study hit ELK3. The accompanying gene expression changes associated with natural killer cell inactivation and depletion in the leukemic immune microenvironment. Moreover, our results suggest that the abundance of G1 cell cycle state at diagnosis and lack of differentiation-associated regulatory network changes during induction chemotherapy represent features of chemoresistance. To target the leukemic regulatory program and thereby overcome treatment resistance, we show that inhibition of ETS-transcription factors reduced cell viability and resolved pathways contributing to this using scRNA-seq. CONCLUSIONS: Our data provide a detailed picture of the transcription factor activities characterizing both normal B-lineage differentiation and those acquired in leukemic bone marrow and provide a rational basis for new treatment strategies targeting the immune microenvironment and the active regulatory network in leukemia.


Assuntos
Diferenciação Celular/genética , Proliferação de Células , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Leucemia/genética , Linfócitos/fisiologia , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Repressoras/genética , Medula Óssea , Linhagem Celular Tumoral , Criança , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Sistemas de Liberação de Medicamentos , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Leucemia/tratamento farmacológico , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição , Transcriptoma , Translocação Genética , Variante 6 da Proteína do Fator de Translocação ETS
4.
Leuk Lymphoma ; 61(13): 3089-3100, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32835548

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is a hematological malignancy driven by abnormal activity of transcription factors. Here we report an aberrant expression of the developmental transcription factor SIX6 in the TAL1-subtype of T-ALL. Our results demonstrate that the binding of TAL1 and GATA3 transcription factors into an upstream enhancer element directly regulates SIX6 expression. High expression of SIX6 was associated with inferior event-free survival within three independent patient cohorts. At a functional level, CRISPR-Cas9-mediated knockout of the SIX6 gene in TAL1 positive Jurkat cells induced changes in genes associated with the mTOR-, K-RAS-, and TNFα-related molecular signatures but did not impair cell proliferation or viability. There was also no acceleration of T-ALL development within a Myc driven zebrafish tumor model in vivo. Taken together, our results show that SIX6 belongs to the TAL1 regulatory gene network in T-ALL but is alone insufficient to influence the development or maintenance of T-ALL.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular Tumoral , Proteínas de Homeodomínio , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Proto-Oncogênicas/genética , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Transativadores , Peixe-Zebra/genética
5.
PLoS One ; 5(9): e12991, 2010 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-20885999

RESUMO

BACKGROUND: The differentiation of fibroblast-like pre-adipocytes to lipid-loaded adipocytes is regulated by a network of transcription factors, the most prominent one being the nuclear receptor peroxisome proliferator-activated receptor (PPAR) γ. However, many of the other 47 members of the nuclear receptor superfamily have an impact on adipogenesis, which in human cells has not been investigated in detail. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed by quantitative PCR all human nuclear receptors at multiple time points during differentiation of SGBS pre-adipocytes. The earliest effect was the down-regulation of the genes RARG, PPARD, REV-ERBA, REV-ERBB, VDR and GR followed by the up-regulation of PPARG, LXRA and AR. These observations are supported with data from 3T3-L1 mouse pre-adipocytes and primary human adipocytes. Investigation of the effects of the individual differentiation mix components in short-term treatments and of their omission from the full mix showed that the expression levels of the early-regulated nuclear receptor genes were most affected by the glucocorticoid receptor (GR) ligand cortisol and the phosphodiesterase inhibitor IBMX. Interestingly, the effects of both compounds converged to repress the genes PPARD, REV-ERBA, REV-ERBB, VDR and GR, whereas cortisol and IBMX showed antagonistic interaction for PPARG, LXRA and AR causing a time lag in their up-regulation. We hypothesize that the well-known auto-repression of GR fine-tunes the detected early responses. Consistently, chromatin immunoprecipitation experiments showed that GR association increased on the transcription start sites of the genes RARG, REV-ERBB, VDR and GR. CONCLUSIONS/SIGNIFICANCE: Adipocyte differentiation is a process, in which many members of the nuclear receptor superfamily change their mRNA expression. The actions of cortisol and IBMX converged to repress several nuclear receptors early in differentiation, while up-regulation of other nuclear receptor genes showed a time lag due to antagonisms of the signals. Our results place GR and its ligand cortisol as central regulatory factors controlling early regulatory events in human adipogenesis that precedes the regulation of the later events by PPARG.


Assuntos
Adipócitos/metabolismo , Adipogenia , Perfilação da Expressão Gênica , Receptores Citoplasmáticos e Nucleares/genética , Células 3T3 , Adipócitos/citologia , Animais , Diferenciação Celular , Linhagem Celular , Humanos , Camundongos , Família Multigênica , Receptores Citoplasmáticos e Nucleares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...