Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 470: 134278, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631247

RESUMO

Resuspension caused by human walking activities is an important source of indoor bioaerosols and has been associated with health effects such as allergies and asthma. However, it is unknown whether inhalation of resuspended bioaerosols is an important exposure pathway for airborne infection. Also, crucial factors influencing the resuspension of settled microbes have not been quantified. In this study, we experimentally investigated the resuspension of culturable bacteria from human-stepping on polyvinyl chloride (PVC) flooring under different conditions. We determined the bacterial resuspension emission factor (ER), a normalized resuspension parameter for the ratio of resuspended mass in the air to the mass of settled particles, for two common bacteria, Escherichia coli and Salmonella enterica. The investigation involved varying factors such as microbial surface-attached durations (0, 1, 2, and 3 days), the absence or presence of nutrients on flooring surfaces, and changes in relative humidity (RH) (35%, 65%, and 85%). The results showed that, in the absence of nutrients, the highest ER values for E. coli and S. enterica were 3.8 × 10-5 ± 5.2 × 10-6 and 5.3 × 10-5 ± 6.0 × 10-6, respectively, associated with surface-attached duration of 0 days. As the surface-attached duration increased from 0 to 3 days, ER values decreased by 92% and 84% for E. coli and S. enterica, respectively. In addition, we observed that ER values decreased with the increasing RH, which is consistent with particle adhesion theory. This research offers valuable insights into microbial resuspension during human walking activities and holds the potential for assisting in the assessment and estimation of risks related to human exposure to bioaerosols.


Assuntos
Escherichia coli , Umidade , Caminhada , Humanos , Pisos e Cobertura de Pisos , Salmonella enterica , Aerossóis , Poluição do Ar em Ambientes Fechados , Microbiologia do Ar , Cloreto de Polivinila/química , Nutrientes
2.
Sci Total Environ ; 894: 164942, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37329918

RESUMO

Incense burning is a common religious activity that emits abundant gaseous and particulate pollutants into the atmosphere. During their atmospheric lifetime, these gases and particles are subjected to oxidation, leading to the formation of secondary pollutants. We examined the oxidation of incense burning plumes under O3 exposure and dark condition using an oxidation flow reactor connected to a single particle aerosol mass spectrometer (SPAMS). Nitrate formation was observed in incense burning particles, mainly attributable to the ozonolysis of nitrogen-containing organic compounds. With UV on, nitrate formation was significantly enhanced, likely due to HNO3/HNO2/NOx uptake triggered by OH chemistry, which is more effective than ozone oxidation. The extent of nitrate formation is insensitive to O3 and OH exposure, possibly due to the diffusion limitation on interfacial uptake. The O3-UV-aged particles are more oxygenated and functionalized than O3-Dark-aged particles. Oxalate and malonate, two typical secondary organic aerosol (SOA) components, were found in O3-UV-aged particles. Our work reveals that nitrate, accompanied by SOA, can rapidly form in incense-burning particles upon photochemical oxidation in the atmosphere, which could deepen our understanding of air pollution caused by religious activities.

3.
Nat Commun ; 14(1): 2676, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37160974

RESUMO

Viruses in built environments (BEs) raise public health concerns, yet they are generally less studied than bacteria. To better understand viral dynamics in BEs, this study assesses viromes from 11 habitats across four types of BEs with low to high occupancy. The diversity, composition, metabolic functions, and lifestyles of the viromes are found to be habitat dependent. Caudoviricetes species are ubiquitous on surface habitats in the BEs, and some of them are distinct from those present in other environments. Antimicrobial resistance genes are identified in viruses inhabiting surfaces frequently touched by occupants and in viruses inhabiting occupants' skin. Diverse CRISPR/Cas immunity systems and anti-CRISPR proteins are found in bacterial hosts and viruses, respectively, consistent with the strongly coupled virus-host links. Evidence of viruses potentially aiding host adaptation in a specific-habitat manner is identified through a unique gene insertion. This work illustrates that virus-host interactions occur frequently in BEs and that viruses are integral members of BE microbiomes.


Assuntos
Ácidos Alcanossulfônicos , Microbiota , Viroma , Ambiente Construído , Microbiota/genética
4.
Environ Sci Technol ; 56(24): 17849-17857, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36469399

RESUMO

Far-UVC irradiation (222 nm) is considered an emerging and sustainable solution for future infection and pandemic challenges. We examined the disinfection performance of a krypton-chloride lamp, with a quasi-monochromatic UVC peak at 222 nm, for inactivating airborne microorganisms in a full-scale ventilation duct system. Single-pass disinfection efficacy of far-UVC was determined and compared with that of a conventional mercury-type UVC (254 nm) lamp. Four bacteria, Escherichia coli (E. coli), Pseudomonas alcaligenes (P. alcaligenes), Serratia marcescens (S. marcescens), and Staphylococcus epidermidis (S. epidermidis), as well as bacteriophage P22, were tested under UV exposure with different velocities of duct flows. The data revealed that as the air velocity increased from 0.7 to 4 m/s, the far-UVC disinfection efficacies would decrease by 42, 47, 35, 39, and 33% for these five microorganisms, respectively. The inactivation rate constants to far-UVC light were 4.9, 7.5, 3.3, 6.3, and 3.0 cm2/mJ for aerosolized E. coli, P. alcaligenes, S. marcescens, S. epidermidis, and bacteriophage P22, respectively. Far-UVC irradiation showed a comparable disinfection ability on airborne microorganisms compared with the 254 nm UV irradiation. This first study of far-UVC in real duct applications provides a better understanding of the disinfection performance of this solution in bioaerosol inactivation. It offers a valuable database in the sizing and design of excimer lamps for novel portable air purifiers or in-duct disinfection units.


Assuntos
Desinfecção , Bactérias , Escherichia coli , Mercúrio , Raios Ultravioleta
5.
J Hazard Mater ; 440: 129791, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36027747

RESUMO

Cost-effective and safe air disinfection methods are urgently needed in various environmental public settings. A novel UVC-based disinfection system was designed and tested to provide a promising solution because of its effective inactivation of indoor bioaerosols at a low cost. UVC light-emitting diodes (UVC-LEDs) were utilized as the irradiation source. This system has the unique feature of rotating the UVC-LEDs to generate a "scanning irradiation" zone. Escherichia coli was aerosolized into an experimental chamber, exposed to UVC-LEDs, and sampled using an impactor. Effects of air mixing (well-mixed vs. poorly-mixed), transmission range (short vs. long), and irradiation mode (stationary vs. rotating) were evaluated. The system performs significantly well under the poorly-mixed condition. The results obtained from the short disinfection range indicate that the rotating UVC was approximately 70.5 % more effective than the stationary UVC for the poorly-mixed case. Further, we evaluated the performance of the long disinfection range under a poorly-mixed situation, and the disinfection efficacy was 84.6 % higher for the rotating irradiation than that of the stationary. About 0.59-1.34 J/m2 UV dose can be used to obtain one-log inactivation of E. coli. In conclusion, the novel rotating upper-room UVC-LED system is effective in reducing indoor pathogen transmission, and our findings are highly significant to a growing field where LEDs are applied for disinfection.


Assuntos
Desinfecção , Escherichia coli , Desinfecção/métodos , Escherichia coli/efeitos da radiação , Raios Ultravioleta
6.
Indoor Air ; 32(1): e12957, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34796996

RESUMO

The efficacy of the in-duct application of ultraviolet waveband C (UVC) emitting at 254 nm wavelength and air ions against aerosolized bacteria was studied in a full-scale 9-m long ventilation duct. Combined positive and negative ion polarities (bipolar ions) and combined UVC and ions were tested. The UVC was generated by a mercury-type UVC lamp and air ions were generated by positive and negative polarity ionizers. Escherichia coli (E. coli), Salmonella typhimurium (S. typhimurium), and Staphylococcus epidermidis (S. epidermidis)were tested at a concentration of 108 to 109 cells in 50 ml of sterilized distilled water. The case in which the positive ionizer was placed first, followed by the negative ionizer, demonstrated significantly higher disinfection efficiencies for E. coli (p = 0.007) and S. typhimurium (p < 0.001), but lower efficiency for S. epidermidis (p = 0.01) than the reversed sequence. The combination of UVC (3.71 J/m2 ) and air ions (1.13 × 1012  ions/m3 for positive ions and 8.00 × 1011  ions/m3 for negative ions) led to higher inactivation than individual disinfection agents operating under the same dose. A synergetic inactivation effect was observed for S. epidermidis under the combined UVC and positive ion case, while the combined UVC and negative ion case showed significant synergy effects for E. coli and S. typhimurium.


Assuntos
Poluição do Ar em Ambientes Fechados , Desinfecção , Escherichia coli , Íons , Salmonella typhimurium , Staphylococcus epidermidis , Raios Ultravioleta
7.
Indoor Air ; 31(2): 324-334, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32989792

RESUMO

A new disinfection system utilizing UVC-LED irradiation was developed. The system was affixed to the toilet seat, and it was challenged by three bacteria strains. Different configurations were tested: 3-LEDs, 5-LEDs (two variants), and 8-LEDs. To determine the arrangement designs of LEDs with the optimum efficacy, two variants of 5-LEDs configurations were additionally considered-uniform and concentrated (2-sided) distributions. It was noticed that disinfection efficacy initially increased with the number of LEDs, but with 8-LEDs, the trend became almost non-obvious for surface disinfection and just marginally increased for airborne disinfection. The mean efficiencies for the surface disinfection ranged from 55.17 ± 23.89% to 72.80 ± 4.13% for E. coli; 36.65 ± 2.99% to 50.05 ± 13.38% for S. typhimurium; and 8.81 ± 3.23% to 39.43 ± 9.33% for S. epidermidis. Likewise, the mean efficiencies for airborne disinfection ranged from 42.17 ± 8.18% to 70.70 ± 4.80%; 40.40 ± 17.90% to 58.31 ± 13.87%; and 24.16 ± 3.81% to 42.79 ± 10.20% for E. coli; S. typhimurium; and S. epidermidis, respectively. Furthermore, the efficacy of the uniform irradiation was nearly twice that of the concentrated irradiation for surface disinfection and 17.70% higher for airborne disinfection, when tested against E coli. Collectively, these very promising results showcased that this compact, sustainable, and localized disinfection system has a high potential for the next generation of disinfection devices.


Assuntos
Aparelho Sanitário , Desinfecção , Raios Ultravioleta , Poluição do Ar em Ambientes Fechados , Bactérias , Escherichia coli
8.
J Hazard Mater ; 396: 122715, 2020 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-32361131

RESUMO

The potential of inactivating indoor bacteria aerosols using a novel rotating ultraviolet-C (UV-C) light-emitting-diode (LED) system was investigated. The system was installed in the upper level of a full scale chamber and its effectiveness against aerosolized E. coli, S. marcescens, and S. epidermidis under the well-mixed with stationary UV-LED scenario was initially tested. The estimated susceptibility values were 1.068, 1.148, and 0.156 m2/J for E. coli, S. marcescens, and S. epidermidis, respectively. Three additional scenarios of experiments were conducted, in which E. coli was aerosolized into the test chamber and then allowed to decay under (i) poorly-mixed condition with stationary system, (ii) well-mixed with rotating system, and (iii) poorly-mixed conditions with rotating system. Our results showed no significant difference between the performance of stationary and rotating UR-UVGI-LED systems under a well-mixed condition. While the performance of the stationary UR-UVGI-LED system under a poorly-mixed condition decreased by 52.90-79.38 % compared to a well-mixed condition, rotating the UR-UVGI-LED system under a poorly-mixed condition, compared to the stationary system, enhanced its performance by 22.36-49.86 %. Thus, our proposed rotating irradiation offers great potential for application in environments where bioaerosols are unevenly distributed in a built environment.


Assuntos
Desinfecção , Escherichia coli , Aerossóis , Bactérias , Raios Ultravioleta
9.
Indoor Air ; 30(3): 500-511, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31903622

RESUMO

In this study, we investigated the effects of environmental factors such as airflow velocity, relative humidity (RH), temperature, and duct reflectance on the performance of in-duct UVC lamps. Staphylococcus epidermidis, Pseudomonas alcaligenes, and Escherichia coli were used as the test bacteria. The UV irradiance, disinfection efficacy, and UV susceptibility constant (Z value) of the test bacteria were experimentally determined. The results showed that the UV disinfection efficacy decreased as the airflow velocity and RH increased. The maximum UV disinfection efficacy was obtained at temperature of 20-21°C compared with the performance at lower temperature (15-16°C) and higher temperature (25-26°C). When the RH increased from 50% to 90%, the Z values of airborne bacteria reduced by 40%, 60%, and 38% for S epidermidis, P alcaligenes, and E coli, respectively. Besides, susceptibility constants had lower values under both cooling temperature (15-16°C) and heating temperature (25-26°C) compared with that under the temperature of 20-21°C. It was observed that S epidermidis generally had the highest resistance to the UV irradiance. The results also showed that the UV disinfection efficacy was lower in the duct with a black surface than in the clean duct.


Assuntos
Desinfecção/métodos , Ventilação , Microbiologia do Ar , Raios Ultravioleta
10.
Indoor Air ; 30(1): 180-191, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31688980

RESUMO

We developed a novel, compact upper-room ultraviolet germicidal irradiation system with light-emitting diode sources (UR-UVGI-LED) to enhance the disinfection of bioaerosols in an enclosed room space. Its effectiveness was evaluated and compared with the conventional upper-room ultraviolet germicidal irradiation system with mercury vapor sources (UR-UVGI-MV). Escherichia coli, Serratia marcescens, and Staphylococcus epidermidis were atomized under the well-mixed condition and exposed to UR-UVGI-LED (or UR-UVGI-MV) device. The intensity output of the UR-UVGI-LED was also varied from 0% (no LED), 25%, 50% to 100% to further evaluate the UR-UVGI-LED disinfection effectiveness under different power levels. The decay rates for UR-UVGI-LED ranged from -0.1420 ± 0.04 min-1 to -0.3331 ± 0.07 min-1 for Escherichia coli, -0.1288 ± 0.01 min-1 to -0.3583 ± 0.02 min-1 for Serratia marcescens, and -0.0330 ± 0.01 min-1 to -0.0487 ± 0.01 min-1 for Staphylococcus epidermidis. It was noticed that the intensity level had a non-linear influence on the UR-UVGI-LED's performance. The decay rates achieved by the UR-UVGI-MV system were -0.3867 ± 0.08 min-1 , -0.4745 ± 0.002 min-1 , and -0.1624 ± 0.02 min-1 for Escherichia coli, Serratia marcescens, and Staphylococcus epidermidis, respectively. Hence, the disinfection performance of both UR-UVGI-LED and UR-UVGI-MV systems was comparable for Escherichia coli and Serratia marcescens. These results demonstrate that the UR-UVGI-LED system has a high potential to be used as a safe and effective irradiated light source to disinfect indoor airborne pathogens.


Assuntos
Microbiologia do Ar , Desinfecção/métodos , Raios Ultravioleta , Aerossóis , Mercúrio , Ventilação
11.
Build Environ ; 127: 204-210, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32287975

RESUMO

In this paper, we develop a mathematical model that aims (1) to predict the distribution of negative ions generated by an air ionizer installed in a ventilation duct and (2) to predict the efficiency with which it inactivates bacteria. The transportation equation for the negative ions was resolved combined with the bulk air velocity and the electric field. The bacteria distribution was solved numerically by integrating the susceptibility constant, which was acquired from the experiments. Two types of bacteria (Serratia marcescens, Staphylococcus epidermidis) were aerosolized and released into a 9-m ventilation duct system. Inactivation efficiencies were calculated for inlet velocities from 2 to 6.5 m/s and for various ion intensities. The efficiencies for S. marcescens and S. epidermidis were 31.53% (SD, 11.4%) and 12.17% (SD, 0.43%), respectively, with susceptibility constants of 8.67 × 10-11 Colony-Forming Units (CFU)/ions and 2.72 × 10-11 CFU/ions, respectively. The modeling results matched those of the experiments well. The pressure penalty at the maximum velocity (6.5 m/s) was only 9 Pa. The results show that the use of negative ions has great potential to enhance indoor air quality by reducing airborne microorganisms in ventilation systems.

12.
Bioengineering (Basel) ; 4(3)2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28952551

RESUMO

Mechanotransduction between cells and the extracellular matrix regulates major cellular functions in physiological and pathological situations. The effect of mechanical cues on biochemical signaling triggered by cell-matrix and cell-cell interactions on model biomimetic surfaces has been extensively investigated by a combination of fabrication, biophysical, and biological methods. To simulate the in vivo physiological microenvironment in vitro, three dimensional (3D) microstructures with tailored bio-functionality have been fabricated on substrates of various materials. However, less attention has been paid to the design of 3D biomaterial systems with geometric variances, such as the possession of precise micro-features and/or bio-sensing elements for probing the mechanical responses of cells to the external microenvironment. Such precisely engineered 3D model experimental platforms pave the way for studying the mechanotransduction of multicellular aggregates under controlled geometric and mechanical parameters. Concurrently with the progress in 3D biomaterial fabrication, cell traction force microscopy (CTFM) developed in the field of cell biophysics has emerged as a highly sensitive technique for probing the mechanical stresses exerted by cells onto the opposing deformable surface. In the current work, we first review the recent advances in the fabrication of 3D micropatterned biomaterials which enable the seamless integration with experimental cell mechanics in a controlled 3D microenvironment. Then, we discuss the role of collective cell-cell interactions in the mechanotransduction of engineered tissue equivalents determined by such integrative biomaterial systems under simulated physiological conditions.

13.
Environ Sci Technol ; 51(3): 1140-1146, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-27997143

RESUMO

Ultrafine particles (UFP) produced by electric heating of stoves and metal cooking pans, absent food, have been hypothesized to be created from a surface film of semivolatile organic compounds (SVOCs) sorbed from the surrounding air. This study tests that hypothesis by size-resolved measurements extending the lower range of the UFP studied from 10 to 2.3 nm, and including other surfaces (glass, aluminum, and porcelain). Heating glass Petri dishes or squares of aluminum foil to about 350-400 °C for 4-6 min removed all sorbed organic substances completely. Subsequent exposure of these "clean" Petri dishes and foil squares to indoor air in two different residences for successively longer periods (1 h to 281 days), followed by heating the materials for 4-6 min, indicated a strong relationship of the number, size distribution, and mass of the UFP to the time exposed. Estimates of the accumulation rate of SVOCs on surfaces were similar to those in studies of organic film buildup on indoor windows. Transfer of skin oils by touching the glass or foil surfaces, or after washing the glass surface with detergent and bare hands, was also observed, with measured particle production comparable with that produced by long-term exposure to indoor air.


Assuntos
Poluição do Ar em Ambientes Fechados , Habitação , Poluentes Atmosféricos , Culinária , Calefação , Compostos Orgânicos , Tamanho da Partícula
14.
Biomed Mater ; 10(1): 015015, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25634058

RESUMO

Functionalization of a biomaterial surface with adhesive ligands is an effective way to promote specific cell adhesion. Ideally, biomaterial for applications in biomedical implants should simultaneously promote host cell adhesion and inhibit bacterial adhesion. Currently, little attention has been paid to the design of antimicrobial biomaterial with selective adhesiveness towards only targeted cells or tissues. In this study, the role of two typical adhesive ligands on the bioadhesion functions of a model antimicrobial film was elucidated. First, an adhesive ligand including an RGD peptide or collagen (CL) was chemically coupled to an antimicrobial polymeric multilayer composed of dextran sulfate (DS) and chitosan (CS). It was demonstrated that the density of RGD and CL immobilized on the DS/CS multilayer ranges between 4 to 137 ng cm(-2) and 100 to 1000 ng cm(-2), respectively. Then the effect of immobilized RGD or CL on both bacterial and fibroblast adhesion was investigated. By determining the density and morphology of adherent fibroblast on a DS/CS multilayer with or without an adhesive ligand, it was shown that RGD or CL effectively promoted fibroblast adhesion and proliferation in a concentration-dependent manner. Interestingly, the type of adhesive ligands imposed distinct effects in bacterial adhesion. Immobilized RGD did not enhance Staphylococcus aureus and Escherichia coli adhesion on DS/CS multilayers under all concentrations. In contrast, CL triggered significant S. aureus adhesion on DS/CS multilayers even at low surface concentration and when fibroblast adhesion was absent. Moreover, the detachment forces of individual S. aureus on CL coated DS/CS multilayers probed by atomic force microscopy (AFM) was 3 times and 20 times higher than that on the control substrate and on unmodified DS/CS multilayers, respectively. Interestingly, the lowest detachment force of E. coli was found on the CL coated DS/CS multilayers. This study demonstrated the possibility of engineering an antimicrobial multilayer coating with tailored adhesive properties towards specific cell types for potential applications in biomedical implants.


Assuntos
Anti-Infecciosos/química , Materiais Biocompatíveis/química , Polímeros/química , Células 3T3 , Animais , Aderência Bacteriana , Adesão Celular , Proliferação de Células , Quitosana/química , Colágeno/química , Sulfato de Dextrana/química , Escherichia coli/citologia , Fibroblastos/citologia , Ligantes , Camundongos , Microscopia de Força Atômica , Microscopia Confocal , Oligopeptídeos/química , Staphylococcus aureus/citologia , Propriedades de Superfície , Engenharia Tecidual
15.
Build Environ ; 76: 73-80, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32288026

RESUMO

Common ventilation strategies may fail to maintain indoor air quality when atmosphere is heavily polluted by particulate matter. This paper evaluates the performances of common constant air volume (CAV) system and variable air volume (VAV) system when carbon dioxide and particles are significantly present in outdoor environment. Major system parameters including filter efficiency, occupancy number, ventilation air rate, and outdoor particle concentration are thoroughly examined. Firstly, a full-scale chamber experiment is performed to investigate the dynamics of CO2 and airborne particles under steady and non-steady scenarios. The result is further validated with a previously-developed state-space model. Secondly, an exhaustive case study is conducted using an established mathematical model. In order to reduce CO2 concentration, both CAV and CO2-based demand-controlled VAV may cause an undesirable increase in particle concentration when outdoor air is heavily polluted by particles. This dilemma requires further studies on the optimization of ventilation schemes.

16.
J Hazard Mater ; 192(3): 1299-306, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21752541

RESUMO

Estimating inhalation dose accurately under realistic conditions can enhance the accuracy of risk assessment. Conventional methods to quantify aerosol concentration that susceptible victims in contaminated environments are exposed to use real time particle counters to measure concentrations in environments without occupancy. Breathing-induced airflow interacts and influences concentration around nostrils or mouth and alter the ultimate exposure. This subject has not yet been systematically studied, particularly under transient emission. In this work, an experimental facility comprising two manikins was designed and fabricated. One of them mimicked realistic breathing, acting as a susceptible victim. Both steady and episodic emissions were generated in an air-conditioned environmental chamber in which two different ventilation schemes were tested. The scaled-dose of the victim under different expiratory velocities and pulmonary ventilation was measured. Inferring from results obtained from comprehensive tests, it can be concluded that breathing has very significant influence on the ultimate dose compared with that without breathing. Majority of results show that breathing reduces inhalation quantity and the reduction magnitude increases with breathing rate. This is attributed to the fact that the exhalation process plays a more significant role in reducing the dose level than the enhanced effect during inhalation period. The higher the breathing rate, the sharper the decline of the resultant concentration would be leading to lower dose. Nevertheless, under low pulmonary ventilation, results show that breathing increases dose marginally. Results also reveals that ventilation scheme also affects the exposure.


Assuntos
Aerossóis/química , Ventilação Pulmonar , Poluentes Atmosféricos/análise , Meio Ambiente , Monitoramento Ambiental , Humanos , Inalação , Exposição por Inalação , Modelos Estatísticos , Respiração , Medição de Risco , Fatores de Tempo , Ventilação
17.
Build Environ ; 45(2): 371-379, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32288007

RESUMO

Understanding of droplet transport in indoor environments with thermal effects is very important to comprehend the airborne pathogen infection through expiratory droplets. In this work, a well-resolved Large Eddy Simulation (LES) was performed to compute the concentration profiles of monodisperse aerosols in non-isothermal low-Reynolds turbulent flow taking place in an enclosed environment. Good care was taken to ensure that the main dynamical features of the continuous phase were captured by the present LES. The particle phase was studied in both Lagrangian and Eulerian frameworks. Steady temperature and velocity were measured prior to droplet emission. Evolution of aerosol concentration was measured by a particle counter. Results of the present LES were to compare reasonably well with the experimental findings for both phases.

18.
J Hazard Mater ; 167(1-3): 736-44, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19232824

RESUMO

The increasing incidence of indoor airborne infections has prompted attention upon the investigation of expiratory droplet dispersion and transport in built environments. In this study, a source (i.e. a patient who generates droplets) and a receiver (i.e. a susceptible object other than the source) are modeled in a mechanically ventilated room. The receiver's exposure to the droplet nuclei is analyzed under two orientations relative to the source. Two droplet nuclei, 0.1 and 10 microm, with different emission velocities, are selected to represent large expiratory droplets which can still be inhaled into the human respiratory tracts. The droplet dispersion and mixing characteristics under well-mixed and displacement ventilation schemes are evaluated and compared numerically. Results show that the droplet dispersion and mixing under displacement ventilation is consistently poorer. Very low concentration regions are also observed in the displacement scheme. For both ventilation schemes, the intake dose will be reduced substantially if the droplets are emitted under the face-to-wall orientation rather than the face-to-face orientation. Implications of using engineering strategies for reducing exposure are briefly discussed.


Assuntos
Microbiologia do Ar , Poluição do Ar em Ambientes Fechados , Infecções/etiologia , Simulação por Computador , Expiração , Humanos , Exposição por Inalação , Ventilação
19.
Atmos Environ (1994) ; 42(8): 1717-1726, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32288555

RESUMO

Better understanding of aerosol dynamics is an important step for improving personal exposure assessments in indoor environments. Although the limitation of the assumptions in a well-mixed model is well known, there has been very little research reported in the published literature on the discrepancy of exposure assessments between numerical models which take account of gravitational effects and the well-mixed model. A new Eulerian-type drift-flux model has been developed to simulate particle dispersion and personal exposure in a two-zone geometry, which accounts for the drift velocity resulting from gravitational settling and diffusion. To validate the numerical model, a small-scale chamber was fabricated. The airflow characteristics and particle concentrations were measured by a phase Doppler Anemometer. Both simulated airflow and concentration profiles agree well with the experimental results. A strong inhomogeneous concentration was observed experimentally for 10 µm aerosols. The computational model was further applied to study a simple hypothetical, yet more realistic scenario. The aim was to explore different levels of exposure predicted by the new model and the well-mixed model. Aerosols are initially uniformly distributed in one zone and subsequently transported and dispersed to an adjacent zone through an opening. Owing to the significant difference in the rates of transport and dispersion between aerosols and gases, inferred from the results, the well-mixed model tends to overpredict the concentration in the source zone, and under-predict the concentration in the exposed zone. The results are very useful to illustrate that the well-mixed assumption must be applied cautiously for exposure assessments as such an ideal condition may not be applied for coarse particles.

20.
Atmos Environ (1994) ; 41(25): 5249-5256, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32288553

RESUMO

Understanding of aerosol dispersion characteristics has many scientific and engineering applications. It is recognized that Eulerian or Lagrangian approach has its own merits and limitations. A new Eulerian model has been developed and it adopts a simplified drift-flux methodology in which external forces can be incorporated straightforwardly. A new near-wall treatment is applied to take into account the anisotropic turbulence for the modified Lagrangian model. In the present work, we present and compare both Eulerian and Lagrangian models to simulate particle dispersion in a small chamber. Results reveal that the standard k-ε Lagrangian model over-predicts particle deposition compared to the present turbulence-corrected Lagrangian approach. Prediction by the Eulerian model agrees well with the modified Lagrangian model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...