Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(21)2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36359811

RESUMO

Human teeth are highly innervated organs that contain a variety of mesenchymal stem cell populations that could be used for cell-based regenerative therapies. Specific molecules are often used in these treatments to favorably modulate the function and fate of stem cells. Nogo-A, a key regulator of neuronal growth and differentiation, is already used in clinical tissue regeneration trials. While the functions of Nogo-A in neuronal tissues are extensively explored, its role in teeth still remains unknown. In this work, we first immunohistochemically analyzed the distribution of Nogo-A protein in the dental pulp of human teeth. Nogo-A is localized in a variety of cellular and structural components of the dental pulp, including odontoblasts, fibroblasts, neurons and vessels. We also cross-examined Nogo expression in the various pulp cell clusters in a single cell RNA sequencing dataset of human dental pulp, which showed high levels of expression in all cell clusters, including that of stem cells. We then assessed the role of Nogo-A on the fate of human dental pulp stem cells and their differentiation capacity in vitro. Using immunostaining, Alizarin Red S, Nile Red and Oil Red O staining we showed that Nogo-A delayed the differentiation of cultured dental pulp stem cells toward the osteogenic, adipogenic and neurogenic lineages, while addition of the blocking anti-Nogo-A antibody had opposite effects. These results were further confirmed by qRT-PCR, which demonstrated overexpression of genes involved in osteogenic (RUNX2, ALP, SP7/OSX), adipogenic (PPAR-γ2, LPL) and neurogenic (DCX, TUBB3, NEFL) differentiation in the presence of the anti-Nogo-A antibody. Conversely, the osteogenic and adipogenic genes were downregulated by Nogo-A. Taken together, our results show that the functions of Nogo-A are not restricted to neuronal cells but are extended to other cell populations, including dental pulp stem cells. We show that Nogo-A regulates their fates toward osteogenic, adipogenic and neurogenic differentiation, thus indicating its potential use in clinics.


Assuntos
Polpa Dentária , Osteogênese , Humanos , Osteogênese/fisiologia , Diferenciação Celular , Adipogenia , Células-Tronco
2.
Fish Shellfish Immunol ; 106: 755-767, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32858187

RESUMO

Interferon regulatory factor 4 (IRF4), in conjunction with thermogenic regulation, is a negative regulator of immune responses. Therefore, we examined whether temperature changes regulated the antiviral response of IRF4 in nervous necrosis virus (NNV)-infected orange-spotted groupers. We found that osgIRF4 mRNA expression was responsive to poly I:C stimulation and NNV infection. In vitro overexpression of osgIRF4 caused a marked decrease in the promoter activity of the antiviral protein Mx1, and magnified NNV replication. Notably, we showed that the IAD domain of osgIRF4 exerted a dominant inhibitory effect on the Mx1 promoter. Furthermore, on exposure to high temperatures, the action of osgIRF4 was dependent on heat shock factor 1 (HSF1) expression. Additionally, small interfering RNA knockdown of HSF1 abrogated high temperature-mediated osgIRF4 activity. These findings suggest that osgIRF4 is an essential negative regulator of innate antiviral immunity and enhances viral replication during heat stress in the orange-spotted grouper.


Assuntos
Doenças dos Peixes/imunologia , Proteínas de Peixes/imunologia , Peixes/imunologia , Fatores de Transcrição de Choque Térmico/imunologia , Resposta ao Choque Térmico/imunologia , Fatores Reguladores de Interferon/imunologia , Nodaviridae , Infecções por Vírus de RNA/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Proteínas de Peixes/genética , Peixes/genética , Fatores de Transcrição de Choque Térmico/genética , Fatores Reguladores de Interferon/genética , Lipopolissacarídeos/farmacologia , Poli I-C/farmacologia , Infecções por Vírus de RNA/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA