Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Nat Commun ; 15(1): 3850, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719864

RESUMO

The K+ uptake system KtrAB is essential for bacterial survival in low K+ environments. The activity of KtrAB is regulated by nucleotides and Na+. Previous studies proposed a putative gating mechanism of KtrB regulated by KtrA upon binding to ATP or ADP. However, how Na+ activates KtrAB and the Na+ binding site remain unknown. Here we present the cryo-EM structures of ATP- and ADP-bound KtrAB from Bacillus subtilis (BsKtrAB) both solved at 2.8 Å. A cryo-EM density at the intra-dimer interface of ATP-KtrA was identified as Na+, as supported by X-ray crystallography and ICP-MS. Thermostability assays and functional studies demonstrated that Na+ binding stabilizes the ATP-bound BsKtrAB complex and enhances its K+ flux activity. Comparing ATP- and ADP-BsKtrAB structures suggests that BsKtrB Arg417 and Phe91 serve as a channel gate. The synergism of ATP and Na+ in activating BsKtrAB is likely applicable to Na+-activated K+ channels in central nervous system.


Assuntos
Difosfato de Adenosina , Trifosfato de Adenosina , Bacillus subtilis , Proteínas de Bactérias , Potássio , Sódio , Trifosfato de Adenosina/metabolismo , Bacillus subtilis/metabolismo , Sódio/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Potássio/metabolismo , Cristalografia por Raios X , Difosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Sítios de Ligação , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/química , Modelos Moleculares , Ligação Proteica
2.
Virol J ; 20(1): 290, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062493

RESUMO

During coronavirus infection, in addition to the well-known coronavirus genomes and subgenomic mRNAs, an abundance of defective viral genomes (DVGs) can also be synthesized. In this study, we aimed to examine whether DVGs can encode proteins in infected cells. Nanopore direct RNA sequencing and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis were employed. With the protein databases generated by nanopore direct RNA sequencing and the cell lysates derived from the RNA-protein pull-down assay, six DVG-encoded proteins were identified by LC-MS/MS based on the featured fusion peptides caused by recombination during DVG synthesis. The results suggest that the coronavirus DVGs have the capability to encode proteins. Consequently, future studies determining the biological function of DVG-encoded proteins may contribute to the understanding of their roles in coronavirus pathogenesis and the development of antiviral strategies.


Assuntos
Infecções por Coronavirus , Coronavirus , Humanos , Coronavirus/genética , Cromatografia Líquida , Espectrometria de Massas em Tandem , Proteínas/genética , Genoma Viral , RNA Viral/genética
3.
Virol J ; 20(1): 232, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828527

RESUMO

BACKGROUND: In addition to the well-known coronavirus genomes and subgenomic mRNAs, the existence of other coronavirus RNA species, which are collectively referred to as noncanonical transcripts, has been suggested; however, their biological characteristics have not yet been experimentally validated in vitro and in vivo. METHODS: To comprehensively determine the amounts, species and structures of noncanonical transcripts for bovine coronavirus in HRT-18 cells and mouse hepatitis virus A59, a mouse coronavirus, in mouse L cells and mice, nanopore direct RNA sequencing was employed. To experimentally validate the synthesis of noncanonical transcripts under regular infection, Northern blotting was performed. Both Northern blotting and nanopore direct RNA sequencing were also applied to examine the reproducibility of noncanonical transcripts. In addition, Northern blotting was also employed to determine the regulatory features of noncanonical transcripts under different infection conditions, including different cells, multiplicities of infection (MOIs) and coronavirus strains. RESULTS: In the current study, we (i) experimentally determined that coronavirus noncanonical transcripts were abundantly synthesized, (ii) classified the noncanonical transcripts into seven populations based on their structures and potential synthesis mechanisms, (iii) showed that the species and amounts of the noncanonical transcripts were reproducible during regular infection but regulated in altered infection environments, (iv) revealed that coronaviruses may employ various mechanisms to synthesize noncanonical transcripts, and (v) found that the biological characteristics of coronavirus noncanonical transcripts were similar between in vitro and in vivo conditions. CONCLUSIONS: The biological characteristics of noncanonical coronavirus transcripts were experimentally validated for the first time. The identified features of noncanonical transcripts in terms of abundance, reproducibility and variety extend the current model for coronavirus gene expression. The capability of coronaviruses to regulate the species and amounts of noncanonical transcripts may contribute to the pathogenesis of coronaviruses during infection, posing potential challenges in disease control. Thus, the biology of noncanonical transcripts both in vitro and in vivo revealed here can provide a database for biological research, contributing to the development of antiviral strategies.


Assuntos
Infecções por Coronavirus , Coronavirus , Vírus da Hepatite Murina , Bovinos , Animais , Camundongos , Coronavirus/genética , Reprodutibilidade dos Testes , RNA Viral/genética , RNA Mensageiro/genética , Vírus da Hepatite Murina/genética , Vírus da Hepatite Murina/metabolismo
4.
Mol Cancer Res ; 21(11): 1220-1233, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527157

RESUMO

Evidence that circular RNAs (circRNA) serve as protein template is accumulating. However, how the cap-independent translation is controlled remains largely uncharacterized. Here, we show that the presence of intron and thus splicing promote cap-independent translation. By acquiring the exon junction complex (EJC) after splicing, the interaction between circRNA and ribosomes was promoted, thereby facilitating translation. Prevention of splicing by treatment with spliceosome inhibitor or mutating splicing signal hindered cap-independent translation of circRNA. Moreover, EJC-tethering using Cas13 technology reconstituted EJC-dependent circRNA translation. Finally, the level of a coding circRNA from succinate dehydrogenase assembly factor 2 (circSDHAF2) was found to be elevated in the tumorous tissues from patients with colorectal cancer, and shown to be critical in tumorigenesis of colorectal cancer in both cell and murine models. These findings reveal that EJC-dependent control of circSDHAF2 translation is involved in the regulation of oncogenic pathways. IMPLICATIONS: EJC-mediated cap-independent translation of circRNA is implicated in the tumorigenesis of colorectal cancer.


Assuntos
Neoplasias Colorretais , RNA Circular , Humanos , Animais , Camundongos , RNA Circular/genética , Splicing de RNA , Éxons/genética , Carcinogênese/genética , Neoplasias Colorretais/genética
5.
Nat Commun ; 14(1): 1694, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973285

RESUMO

N6-methyladenosine (m6A), one of the most prevalent mRNA modifications in eukaryotes, plays a critical role in modulating both biological and pathological processes. However, it is unknown whether mutant p53 neomorphic oncogenic functions exploit dysregulation of m6A epitranscriptomic networks. Here, we investigate Li-Fraumeni syndrome (LFS)-associated neoplastic transformation driven by mutant p53 in iPSC-derived astrocytes, the cell-of-origin of gliomas. We find that mutant p53 but not wild-type (WT) p53 physically interacts with SVIL to recruit the H3K4me3 methyltransferase MLL1 to activate the expression of m6A reader YTHDF2, culminating in an oncogenic phenotype. Aberrant YTHDF2 upregulation markedly hampers expression of multiple m6A-marked tumor-suppressing transcripts, including CDKN2B and SPOCK2, and induces oncogenic reprogramming. Mutant p53 neoplastic behaviors are significantly impaired by genetic depletion of YTHDF2 or by pharmacological inhibition using MLL1 complex inhibitors. Our study reveals how mutant p53 hijacks epigenetic and epitranscriptomic machinery to initiate gliomagenesis and suggests potential treatment strategies for LFS gliomas.


Assuntos
Glioma , Síndrome de Li-Fraumeni , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Síndrome de Li-Fraumeni/genética , Transformação Celular Neoplásica/genética , Glioma/genética , Proteoglicanas/metabolismo
6.
Mass Spectrom Rev ; 42(6): 2271-2272, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35748520
7.
Food Chem ; 404(Pt A): 134638, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36444029

RESUMO

Soy sauce is one of the significant seasonings in Asia but is often mislabeled in ingredients or substituted with geographical information. With no adequate methods to distinguish the bean sources and the origins of soy sauce, our study designed a seamless headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME/GC-MS) for analyzing unique volatile components of different soy sauces. Over 400 volatile flavor compounds were identified and the assistance of chemometric analysis successfully discriminated different bean sources (black bean and soybean) and producing regions (Taiwan and Japan). The chemometric models can also perfectly evaluate real samples together with adulterated samples. In brief, these soy sauce volatile signatures can solve the problem of authentication and assist the whole industry in preventing adulteration and producing countries' counterfeit.


Assuntos
Fabaceae , Alimentos de Soja , Microextração em Fase Sólida , Cromatografia Gasosa-Espectrometria de Massas , Glycine max
8.
Mass Spectrom Rev ; 42(6): 2273-2323, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35652168

RESUMO

Food adulteration, mislabeling, and fraud, are rising global issues. Therefore, a number of precise and reliable analytical instruments and approaches have been proposed to ensure the authenticity and accurate labeling of food and food products by confirming that the constituents of foodstuffs are of the kind and quality claimed by the seller and manufacturer. Traditional techniques (e.g., genomics-based methods) are still in use; however, emerging approaches like mass spectrometry (MS)-based technologies are being actively developed to supplement or supersede current methods for authentication of a variety of food commodities and products. This review provides a critical assessment of recent advances in food authentication, including MS-based metabolomics, proteomics and other approaches.

9.
Org Lett ; 24(10): 1996-2001, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35254087

RESUMO

We report the insertion of Pd(II) into an originally achiral rotaxane producing two chiral metallorotaxanes: one is planar-chiral, with its two interlocked components both chelating nonequivalently to the metal center; the other is C2-symmetrical-chiral, with the dynamically exchangeable stereogenic units stabilized by the interlocked structure. Chiral additives confirmed the existence of chirality, with the enantiomers of the C2-symmetrical N-heterocyclic carbene complex being resolved using chiral TRISPHAT counteranions.

10.
J Microbiol Immunol Infect ; 55(1): 60-68, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33341362

RESUMO

BACKGROUND: The global rise in nosocomial infections associated with gram-negative bacteria and the spread of multi-drug resistant Acinetobacter baumannii (MDR-AB) pose public health concerns. This study investigates the inhibitory effects and possible inhibitory mechanism of Pseudomonas aeruginosa (PA) on selected clinical strains of A. baumannii (AB) isolated from Taiwanese patients. METHODS: Four and eight clinical strains of AB and PA, respectively, were randomly selected from the bacterial collection of Feng-Yuan Hospital, Taiwan. Antimicrobial-susceptibility was performed on the AB strains. Inhibition potential of the PA strains against AB was assessed by measuring the inhibition zones. In vitro analysis using phenazine-1-carboxamide (PCN) was conducted to assess the possible inhibitory mechanism of PA, which was later confirmed in the clinical isolates by liquid chromatography-mass spectrometry. RESULTS: All the clinical AB strains showed resistance to the eleven antibiotics and were classified as MDR-AB. The nine PA strains exert either a high (PA3596, PA3681, PA3772, and ATCC27853) or a low (PA3613, PA3625, PA3712, PA3715, and PA3744) degree of inhibition against AB strains. 0.25 mg/ml PCN had a clearer inhibition zone than 0.05 mg/ml PCN, suggesting a dose-dependent inhibition of PCN on the AB strains. The four PA strains that demonstrated a high degree of inhibition had a relatively high amount of PCN. CONCLUSION: Selected strains of PA exert inhibitory actions on MDR-AB with PCN being a possible inhibitory agent. This finding raises the possibility of developing effective therapeutic antibiotics and disinfectant from specific components of PA for the treatment and control of Acinetobacter-associated infections in hospital settings.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Infecções por Acinetobacter/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla , Humanos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa
11.
Food Chem ; 374: 131631, 2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-34838403

RESUMO

Seafood substitutions is a global problem and come under the spotlight in recent years. In Taiwan, Greenland halibut is usually substituted for the cod because of its lower price. Nowadays, DNA technology is widely used for fish species identifications; however, it still has concern about the DNA of processed fishery products might be destroyed. This study was designed to develop a proteomic-based method for fish and fishery product authentication by using ultra performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS/MS) with Sequential window acquisition of all theoretical fragment ion spectra (SWATH). The protein biomarkers from the meat of Alaska pollock, Atlantic cod, and Greenland halibut were identified and validated for species authentication of cod and corresponding fishery products, which might prevent consumer substitutions and fish product mislabeling. Besides, the E. coli proteins can be measured from existing SWATH-MS data though retrospective analysis successfully, it might present the quality of fish meat.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Animais , Escherichia coli , Pesqueiros , Estudos Retrospectivos
12.
Clin Exp Rheumatol ; 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34874826

RESUMO

OBJECTIVES: Systemic lupus erythematosus (SLE) is an autoimmune disease. However, no surrogate biomarker is available for SLE diagnosis or predicting disease outcomes. Here, an ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS)-based metabolomics strategy was executed to conduct biomarker discovery in SLE. METHODS: Metabolite profiles were analysed using UPLC-MS/MS analysis of serum samples obtained from the discovery cohort. Differentially expressed metabolites were identified using multivariate analyses. During the validation stage, the significant metabolites identified in the discovery cohort were quantified in a validation cohort using multiple reaction monitoring mass spectrometry (MRM-MS). Differences in serum metabolite levels and SLE disease activity markers were examined by using Spearman's correlation analysis. RESULTS: A total of 29 significant metabolites were identified by the UPLC-MS/MS analysis. These metabolites were primarily involved in fatty acid metabolism (20.69%) and phospholipid catabolism (17.24%). In the validation cohort, 11 of 29 metabolites were quantified, which demonstrated increased levels of pyroglutamic acid and L-phenylalanine in SLE patients compared with healthy controls. Patients with lupus nephritis (LN) presented with higher taurine levels, which could serve as a biomarker. The literature review indicated decreased levels of amino acids and adenosine among SLE patients and increased lipids, low-density lipoprotein, and very low-density lipoprotein among LN patients compared to healthy controls. CONCLUSIONS: Fatty acid metabolism and phospholipid catabolism were affected in SLE patients. Pyroglutamic acid and L-phenylalanine have the potential to act as SLE biomarkers, and taurine might be used to distinguish patients with and without LN.

13.
J Org Chem ; 86(19): 13491-13502, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34514788

RESUMO

In this study we found that 2,6-dimethanolpyridine displays good complementarity toward di(ethylene glycol) for the complexation of Na+ ions, allowing us to use this recognition system for the efficient synthesis of hetero[2]catenanes; indeed, it allowed us to attach multiple copies of [2]catenanes to branched systems presenting multiple isophthalaldehyde units. When we attempted to form a catenane from a preformed macrocycle featuring only a single di(ethylene glycol) unit, reacting it with a di(ethylene glycol) derivative presenting two amino termini, isophthalaldehyde, and templating Na+ ions [i.e., with the aim of using di(ethylene glycol)·Na+·di(ethylene glycol) recognition to template the formation of the interlocked imino macrocycle], the yields of the hetero[2]catenane and homo[2]catenane, comprising two imino macrocyclic units, were both poor (14% and 7%, respectively). In contrast, when one or two 2,6-dimethanolpyridine units were present in the preformed macrocycles, their reactions with the same diamine, dialdehyde, and Na+ ions provided the hetero[2]catenanes with high selectivity and efficiency (44% and 64% yields, respectively), with minimal formation of the competing homo[2]catenane. The high complementary of the 2,6-dimethanolpyridine·Na+·di(ethylene glycol) ligand pair allowed us to synthesize [2]catenane dimers and trimers directly from corresponding isophthalaldehyde-presenting cores, with yields, after subsequent reduction and methylation, of 42% and 31%, respectively.


Assuntos
Catenanos , Etilenoglicol , Antracenos , Íons , Espectroscopia de Ressonância Magnética
14.
Org Lett ; 23(15): 5787-5792, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34240877

RESUMO

We report a new slippage system based on p-tert-butylbenzyl-terminated imidazolium ions and di(ethylene glycol)-containing macrocycles and their use as linking units for the construction of a prototypical molecular "Lock & Lock" box from a resorcinarene-based cavitand "bowl" and a porphyrin "cover". The multivalent structure with four slippage linkers provided the molecular box with high stability, yet the system dissociated into its two components upon application of suitable external stimuli.

15.
Food Chem ; 354: 129590, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-33756333

RESUMO

Honey is widely consumed by humans, due to its multiple applications as a food constituent and its therapeutic effects. This study reports on the discrimination of honey products from different geographical and botanical sources, as well as honey products containing distinct forms of syrup used in honey adulteration. Sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS)-based proteomic analysis combined with chemometrics was successfully applied in identifying characteristic proteins that can be used as biomarkers of the original source of honey. Honey samples from different producing regions (Tainan, Changhua, and Taichung), countries (Taiwan and Thailand), and distinct botanical sources (longan and litchi) were clearly distinguished by the developed orthogonal projections to latent structures discriminant analysis (OPLS-DA) model with good fitness and prediction ability. Furthermore, we successfully discriminated the adulteration of honey with syrup in different proportions (even with honey content as low as 20%) with this proteomic SWATH-MS platform.


Assuntos
Análise de Alimentos/métodos , Qualidade dos Alimentos , Mel/análise , Espectrometria de Massas , Néctar de Plantas/análise , Proteômica , Análise Discriminante , Contaminação de Alimentos/análise , Humanos
16.
J Food Drug Anal ; 29(4): 738-750, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-35649141

RESUMO

A strategy was proposed to analyze bovine milk oligosaccharides using p-aminobenzoic ethyl ester (ABEE) closed-ring labeling and C18 capillary liquid chromatography negative ion electrospray tandem mass spectrometry. Linkage specific fragment ions were used to identify oligosaccharide isomers. By constructing the mass chromatograms using linkage specific fragment ions, isomers were differentiated based on m/z values as well as temporal separation provided by liquid chromatography. In addition to disialyllactose and the single isomer lacto-N-neohexaose, four pairs of linkage isomers including 3'/6'-sialyllactose (3'/6'-SL), 3'/6'-sialyllactosamine (3'/6'-SLN), 3'/6'-sialylgalactosyl-lactose (3'/6'-SGL), and lacto-N-tetraose/lacto-N-neotetraose (LNT/LNnT) in bovine milk were investigated. Variations of bovine milk oligosaccharides in a lactation period of 72 h after calving were studied. Sialylated oligosaccharide was found to be distinctively more abundant in milk of the first 24 h, decreasing in successive milkings. For the first time, the variation of lacto-N-tetraose in bovine milk was reported.


Assuntos
Leite , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida , Ésteres/análise , Feminino , Leite/química , Oligossacarídeos/análise , Oligossacarídeos/química
17.
Oncogenesis ; 9(12): 104, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33281189

RESUMO

Human HLTF participates in the lesion-bypass mechanism through the fork reversal structure, known as template switching of post-replication repair. However, the mechanism by which HLTF promotes the replication progression and fork stability of damaged forks remains unclear. Here, we identify a novel protein-protein interaction between HLTF and PARP1. The depletion of HLTF and PARP1 increases chromosome breaks, further reduces the length of replication tracks, and concomitantly increases the number of stalled forks after methyl methanesulfonate treatment according to a DNA fiber analysis. The progression of replication also depends on BARD1 in the presence of MMS treatment. By combining 5-ethynyl-2'-deoxyuridine with a proximity ligation assay, we revealed that the HLTF, PARP1, and BRCA1/BARD1/RAD51 proteins were initially recruited to damaged forks. However, prolonged stalling of damaged forks results in fork collapse. HLTF and PCNA dissociate from the collapsed forks, with increased accumulation of PARP1 and BRCA1/BARD1/RAD51 at the collapsed forks. Our results reveal that HLTF together with PARP1 and BARD1 participates in the stabilization of damaged forks, and the PARP1-BARD1 interaction is further involved in the repair of collapse forks.

18.
Sci Rep ; 10(1): 6597, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32759951

RESUMO

Cnaphalocrocis medinalis is a major insect pest of rice in Asia. A few defensive enzymes were reported to show higher activities in a resistant rice line (Qingliu) than in a susceptible rice line (TN1) upon leaffolder infestation. However, the overall molecular regulation of the rice defense response against leaffolder herbivory is unknown. Here, differential proteomic analysis by SWATH-MS was performed to identify differentially expressed proteins between the two rice varieties, Qingliu and TN1, at four time points of leaffolder herbivory, 0, 6, 24, and 72 h. Gene Ontology (GO) enrichment of the differentially expressed proteins indicated overrepresentation of (1) photosynthesis, (2) amino acid and derivative metabolic process, and (3) secondary metabolic process. Phenylalanine ammonia lyase and chalcone synthase, which catalyze flavonoid biosynthesis, and lipoxygenase, which catalyzes jasmonic acid biosynthesis, exhibited higher expression in Qingliu than in TN1 even before insect herbivory. Momentary activation of the light reaction and Calvin cycle was detected in Qingliu at 6 h and 24 h of insect herbivory, respectively. At 72 h of insect herbivory, amino acid biosynthesis and glutathione-mediated antioxidation were activated in Qingliu. A defense response involving jasmonic acid signaling, carbon remobilization, and the production of flavonoids and glutathione could underlie the resistance of Qingliu to leaffolder.


Assuntos
Resistência à Doença/genética , Lepidópteros/patogenicidade , Oryza/genética , Proteoma/genética , Aciltransferases/genética , Aciltransferases/metabolismo , Animais , Lipoxigenase/genética , Lipoxigenase/metabolismo , Oryza/parasitologia , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteoma/metabolismo
19.
Rapid Commun Mass Spectrom ; 34(15): e8825, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32396680

RESUMO

RATIONALE: Oriental Beauty, a type of oolong tea native to Taiwan, is highly prized by connoisseurs for its unique fruity aroma and sweet taste. Leaves of Oriental Beauty vary in appearance, aroma, and taste, depending on the degree of tea green leafhopper (Jacobiasca formosana) infestation. In this study, the aim is to investigate the differential expression of proteins in leaves with low, medium, and high degrees of leafhopper infestation. METHODS: Proteomic techniques 2DE (two-dimensional electrophoresis) and nanoscale liquid chromatography/tandem mass spectrometry (LC/MS/MS) were used to investigate the differential expression of proteins in tea leaves with different degrees of leafhopper infestation. RESULTS: A total of 89 proteins were found to exhibit significant differences in expression. In a gene ontology analysis, most of these proteins participated in biosynthesis, carbohydrate metabolism, transport, responses to stress, and amino acid metabolism. CONCLUSIONS: These results indicated that the unique aroma and taste of the leaves might be influenced by their protein expression profiles, as well as related factors such as defensive responses to tea green leafhopper saliva.


Assuntos
Camellia sinensis/parasitologia , Hemípteros/fisiologia , Folhas de Planta/química , Animais , Camellia sinensis/química , Camellia sinensis/genética , Camellia sinensis/metabolismo , Cromatografia Líquida , Comportamento Alimentar , Aromatizantes/química , Aromatizantes/metabolismo , Odorantes/análise , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteômica , Taiwan , Espectrometria de Massas em Tandem
20.
Chem Commun (Camb) ; 56(35): 4773-4776, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32232269

RESUMO

In this study imidazolium and imidazolinium centers in precursor [2]rotaxanes were deprotonated to obtain interlocked molecules featuring stabilized N-heterocyclic carbene centers. The encircling macrocyclic components enhanced the persistence of the otherwise unstable imidazolidin-2-ylidenes in solution at 253 K for more than a week in the absence of air.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...