Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 11(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38627062

RESUMO

Proprioception, the sense of limb and body position, is required to produce accurate and precise movements. Proprioceptive sensory neurons transmit muscle length and tension information to the spinal cord. The function of excitatory neurons in the intermediate spinal cord, which receive this proprioceptive information, remains poorly understood. Using genetic labeling strategies and patch-clamp techniques in acute spinal cord preparations in mice, we set out to uncover how two sets of spinal neurons, Clarke's column (CC) and Atoh1-lineage neurons, respond to electrical activity and how their inputs are organized. Both sets of neurons are located in close proximity in laminae V-VII of the thoracolumbar spinal cord and have been described to receive proprioceptive signals. We find that a majority of CC neurons have a tonic-firing type and express a distinctive hyperpolarization-activated current (Ih). Atoh1-lineage neurons, which cluster into two spatially distinct populations, are mostly a fading-firing type and display similar electrophysiological properties to each other, possibly due to their common developmental lineage. Finally, we find that CC neurons respond to stimulation of lumbar dorsal roots, consistent with prior knowledge that CC neurons receive hindlimb proprioceptive information. In contrast, using a combination of electrical stimulation, optogenetic stimulation, and transsynaptic rabies virus tracing, we find that Atoh1-lineage neurons receive heterogeneous, predominantly local thoracic inputs that include parvalbumin-lineage sensory afferents and local interneuron presynaptic inputs. Altogether, we find that CC and Atoh1-lineage neurons have distinct membrane properties and sensory input organization, representing different subcircuit modes of proprioceptive information processing.


Assuntos
Propriocepção , Medula Espinal , Animais , Propriocepção/fisiologia , Medula Espinal/fisiologia , Medula Espinal/citologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Camundongos Transgênicos , Camundongos , Masculino , Feminino , Potenciais de Ação/fisiologia , Células Receptoras Sensoriais/fisiologia , Técnicas de Patch-Clamp , Camundongos Endogâmicos C57BL , Vértebras Torácicas
2.
J Neurosci ; 42(4): 581-600, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34857649

RESUMO

Proprioception, the sense of limb and body position, generates a map of the body that is essential for proper motor control, yet we know little about precisely how neurons in proprioceptive pathways are wired. Defining the anatomy of secondary neurons in the spinal cord that integrate and relay proprioceptive and potentially cutaneous information from the periphery to the cerebellum is fundamental to understanding how proprioceptive circuits function. Here, we define the unique anatomic trajectories of long-range direct and indirect spinocerebellar pathways as well as local intersegmental spinal circuits using genetic tools in both male and female mice. We find that Clarke's column neurons, a major contributor to the direct spinocerebellar pathway, has mossy fiber terminals that diversify extensively in the cerebellar cortex with axons terminating bilaterally, but with no significant axon collaterals within the spinal cord, medulla, or cerebellar nuclei. By contrast, we find that two of the indirect pathways, the spino-lateral reticular nucleus and spino-olivary pathways, are in part, derived from cervical Atoh1-lineage neurons, whereas thoracolumbar Atoh1-lineage neurons project mostly locally within the spinal cord. Notably, while cervical and thoracolumbar Atoh1-lineage neurons connect locally with motor neurons, no Clarke's column to motor neuron connections were detected. Together, we define anatomic differences between long-range direct, indirect, and local proprioceptive subcircuits that likely mediate different components of proprioceptive-motor behaviors.SIGNIFICANCE STATEMENT We define the anatomy of long-range direct and indirect spinocerebellar pathways as well as local spinal proprioceptive circuits. We observe that mossy fiber axon terminals of Clarke's column neurons diversify proprioceptive information across granule cells in multiple lobules on both ipsilateral and contralateral sides, sending no significant collaterals within the spinal cord, medulla, or cerebellar nuclei. Strikingly, we find that cervical spinal cord Atoh1-lineage neurons form mainly the indirect spino-lateral reticular nucleus and spino-olivary tracts and thoracolumbar Atoh1-lineage neurons project locally within the spinal cord, whereas only a few Atoh1-lineage neurons form a direct spinocerebellar tract.


Assuntos
Cerebelo/fisiologia , Rede Nervosa/fisiologia , Propriocepção/fisiologia , Medula Espinal/fisiologia , Tratos Espinocerebelares/fisiologia , Animais , Animais Recém-Nascidos , Cerebelo/química , Cerebelo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rede Nervosa/química , Rede Nervosa/citologia , Medula Espinal/química , Medula Espinal/citologia , Tratos Espinocerebelares/química , Tratos Espinocerebelares/citologia
3.
Dev Biol ; 479: 91-98, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34352273

RESUMO

Sensory neurogenesis in the dorsal root ganglion (DRG) occurs in two waves of differentiation with larger, myelinated proprioceptive and low-threshold mechanoreceptor (LTMR) neurons differentiating before smaller, unmyelinated (C) nociceptive neurons. This temporal difference was established from early birthdating studies based on DRG soma cell size. However, distinctions in birthdates between molecular subtypes of sensory neurons, particularly nociceptors, is unknown. Here, we assess the birthdate of lumbar DRG neurons in mice using a thymidine analog, EdU, to label developing neurons exiting mitosis combined with co-labeling of known sensory neuron markers. We find that different nociceptor subtypes are born on similar timescales, with continuous births between E9.5 to E13.5, and peak births from E10.5 to E11.5. Notably, we find that thinly myelinated Aδ-fiber nociceptors and peptidergic C-fibers are born more broadly between E10.5 and E11.5 than previously thought and that non-peptidergic C-fibers and C-LTMRs are born with a peak birth date of E11.5. Moreover, we find that the percentages of nociceptor subtypes born at a particular timepoint are the same for any given nociceptor cell type marker, indicating that intrinsic or extrinsic influences on cell type diversity are occurring similarly across developmental time. Overall, the patterns of birth still fit within the classical "two wave" description, as touch and proprioceptive fibers are born primarily at E10.5, but suggest that nociceptors have a slightly broader wave of birthdates with different nociceptor subtypes continually differentiating throughout sensory neurogenesis irrespective of myelination.


Assuntos
Gânglios Espinais/embriologia , Neurogênese/fisiologia , Nociceptores/metabolismo , Animais , Feminino , Gânglios Espinais/metabolismo , Região Lombossacral/embriologia , Região Lombossacral/inervação , Masculino , Mecanorreceptores , Camundongos , Camundongos Endogâmicos ICR , Bainha de Mielina , Fibras Nervosas Mielinizadas/metabolismo , Nociceptores/fisiologia , Células Receptoras Sensoriais/metabolismo
4.
Cell Rep ; 34(13): 108913, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33789102

RESUMO

Prdm12 is a key transcription factor in nociceptor neurogenesis. Mutations of Prdm12 cause congenital insensitivity to pain (CIP) from failure of nociceptor development. However, precisely how deletion of Prdm12 during development or adulthood affects nociception is unknown. Here, we employ tissue- and temporal-specific knockout mouse models to test the function of Prdm12 during development and in adulthood. We find that constitutive loss of Prdm12 causes deficiencies in proliferation during sensory neurogenesis. We also demonstrate that conditional knockout from dorsal root ganglia (DRGs) during embryogenesis causes defects in nociception. In contrast, we find that, in adult DRGs, Prdm12 is dispensable for most pain-sensation and injury-induced hypersensitivity. Using transcriptomic analysis, we find mostly unique changes in adult Prdm12 knockout DRGs compared with embryonic knockout and that PRDM12 is likely a transcriptional activator in the adult. Overall, we find that the function of PRDM12 changes over developmental time.


Assuntos
Desenvolvimento Embrionário , Proteínas do Tecido Nervoso/deficiência , Nociceptores/metabolismo , Percepção da Dor , Envelhecimento/metabolismo , Animais , Proteínas de Transporte/genética , Proliferação de Células , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Éxons/genética , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Nociceptividade , Insensibilidade Congênita à Dor/genética , Proteínas Repressoras/metabolismo , Transcrição Gênica
5.
eNeuro ; 8(1)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33468540

RESUMO

Motor neurons (MNs) innervating the digit muscles of the intrinsic hand (IH) and intrinsic foot (IF) control fine motor movements. The ability to reproducibly label specifically IH and IF MNs in mice would be a beneficial tool for studies focused on fine motor control. To this end, we find that a CRE knock-in mouse line of Atoh1, a developmentally expressed basic helix-loop-helix (bHLH) transcription factor, reliably expresses CRE-dependent reporter genes in ∼60% of the IH and IF MNs. We determine that CRE-dependent expression in IH and IF MNs is ectopic because an Atoh1 mouse line driving FLPo recombinase does not label these MNs although other Atoh1-lineage neurons in the intermediate spinal cord are reliably identified. Furthermore, the CRE-dependent reporter expression is enriched in the IH and IF MN pools with much sparser labeling of other limb-innervating MN pools such as the tibialis anterior (TA), gastrocnemius (GS), quadricep (Q), and adductor (Ad). Lastly, we find that ectopic reporter expression begins postnatally and labels a mixture of α and γ-MNs. Altogether, the Atoh1 CRE knock-in mouse strain might be a useful tool to explore the function and connectivity of MNs involved in fine motor control when combined with other genetic or viral strategies that can restrict labeling specifically to the IH and IF MNs. Accordingly, we provide an example of sparse labeling of IH and IF MNs using an intersectional genetic approach.


Assuntos
Neurônios Motores , Medula Espinal , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Camundongos , Músculo Esquelético
6.
Nat Commun ; 11(1): 4175, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32826903

RESUMO

Somatic sensation is defined by the existence of a diversity of primary sensory neurons with unique biological features and response profiles to external and internal stimuli. However, there is no coherent picture about how this diversity of cell states is transcriptionally generated. Here, we use deep single cell analysis to resolve fate splits and molecular biasing processes during sensory neurogenesis in mice. Our results identify a complex series of successive and specific transcriptional changes in post-mitotic neurons that delineate hierarchical regulatory states leading to the generation of the main sensory neuron classes. In addition, our analysis identifies previously undetected early gene modules expressed long before fate determination although being clearly associated with defined sensory subtypes. Overall, the early diversity of sensory neurons is generated through successive bi-potential intermediates in which synchronization of relevant gene modules and concurrent repression of competing fate programs precede cell fate stabilization and final commitment.


Assuntos
Neurogênese/genética , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/fisiologia , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Animais , Diferenciação Celular , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/fisiologia , Células-Tronco
7.
J Neurosci ; 40(16): 3165-3177, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32213554

RESUMO

Despite their opposing actions on food intake, POMC and NPY/AgRP neurons in the arcuate nucleus of the hypothalamus (ARH) are derived from the same progenitors that give rise to ARH neurons. However, the mechanism whereby common neuronal precursors subsequently adopt either the anorexigenic (POMC) or the orexigenic (NPY/AgRP) identity remains elusive. We hypothesize that POMC and NPY/AgRP cell fates are specified and maintained by distinct intrinsic factors. In search of them, we profiled the transcriptomes of developing POMC and NPY/AgRP neurons in mice. Moreover, cell-type-specific transcriptomic analyses revealed transcription regulators that are selectively enriched in either population, but whose developmental functions are unknown in these neurons. Among them, we found the expression of the PR domain-containing factor 12 (Prdm12) was enriched in POMC neurons but absent in NPY/AgRP neurons. To study the role of Prdm12 in vivo, we developed and characterized a floxed Prdm12 allele. Selective ablation of Prdm12 in embryonic POMC neurons led to significantly reduced Pomc expression as well as early-onset obesity in mice of either sex that recapitulates symptoms of human POMC deficiency. Interestingly, however, specific deletion of Prdm12 in adult POMC neurons showed that it is no longer required for Pomc expression or energy balance. Collectively, these findings establish a critical role for Prdm12 in the anorexigenic neuron identity and suggest that it acts developmentally to program body weight homeostasis. Finally, the combination of cell-type-specific genomic and genetic analyses provides a means to dissect cellular and functional diversity in the hypothalamus whose neurodevelopment remains poorly studied.SIGNIFICANCE STATEMENT POMC and NPY/AgRP neurons are derived from the same hypothalamic progenitors but have opposing effects on food intake. We profiled the transcriptomes of genetically labeled POMC and NPY/AgRP neurons in the developing mouse hypothalamus to decipher the transcriptional codes behind the versus orexigenic neuron identity. Our analyses revealed 29 transcription regulators that are selectively enriched in one of the two populations. We generated new mouse genetic models to selective ablate one of POMC-neuron enriched transcription factors Prdm12 in developing and adult POMC neurons. Our studies establish a previously unrecognized role for Prdm12 in the anorexigenic neuron identity and suggest that it acts developmentally to program body weight homeostasis.


Assuntos
Hipotálamo/metabolismo , Melanocortinas/metabolismo , Neurônios/metabolismo , Transcriptoma , Proteína Relacionada com Agouti/metabolismo , Animais , Peso Corporal , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Melanocortinas/genética , Camundongos , Camundongos Transgênicos , Pró-Opiomelanocortina/metabolismo
8.
Cell Rep ; 26(13): 3484-3492.e4, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30917305

RESUMO

The sensation of pain is essential for the preservation of the functional integrity of the body. However, the key molecular regulators necessary for the initiation of the development of pain-sensing neurons have remained largely unknown. Here, we report that, in mice, inactivation of the transcriptional regulator PRDM12, which is essential for pain perception in humans, results in a complete absence of the nociceptive lineage, while proprioceptive and touch-sensitive neurons remain. Mechanistically, our data reveal that PRDM12 is required for initiation of neurogenesis and activation of a cascade of downstream pro-neuronal transcription factors, including NEUROD1, BRN3A, and ISL1, in the nociceptive lineage while it represses alternative fates other than nociceptors in progenitor cells. Our results thus demonstrate that PRDM12 is necessary for the generation of the entire lineage of pain-initiating neurons.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Nociceptores/fisiologia , Animais , Proteínas de Transporte/genética , Linhagem da Célula , Galinhas , Feminino , Perfilação da Expressão Gênica , Imuno-Histoquímica , Masculino , Camundongos , Proteínas do Tecido Nervoso/genética , Neurogênese/genética , Nociceptividade/fisiologia , Fatores de Transcrição/metabolismo
9.
Development ; 143(19): 3434-3448, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27702783

RESUMO

The spinal cord integrates and relays somatosensory input, leading to complex motor responses. Research over the past couple of decades has identified transcription factor networks that function during development to define and instruct the generation of diverse neuronal populations within the spinal cord. A number of studies have now started to connect these developmentally defined populations with their roles in somatosensory circuits. Here, we review our current understanding of how neuronal diversity in the dorsal spinal cord is generated and we discuss the logic underlying how these neurons form the basis of somatosensory circuits.


Assuntos
Neurônios/metabolismo , Sensação/fisiologia , Medula Espinal/metabolismo , Fatores de Transcrição/metabolismo , Animais , Humanos , Interneurônios/citologia , Interneurônios/metabolismo , Modelos Teóricos , Neurônios/citologia , Sensação/genética , Fatores de Transcrição/genética
10.
Cell Rep ; 13(6): 1258-1271, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26527010

RESUMO

Proprioception, the sense of limb and body position, is essential for generating proper movement. Unconscious proprioceptive information travels through cerebellar-projecting neurons in the spinal cord and medulla. The progenitor domain defined by the basic-helix-loop-helix (bHLH) transcription factor, ATOH1, has been implicated in forming these cerebellar-projecting neurons; however, their precise contribution to proprioceptive tracts and motor behavior is unknown. Significantly, we demonstrate that Atoh1-lineage neurons in the spinal cord reside outside Clarke's column (CC), a main contributor of neurons relaying hindlimb proprioception, despite giving rise to the anatomical and functional correlate of CC in the medulla, the external cuneate nucleus (ECu), which mediates forelimb proprioception. Elimination of caudal Atoh1-lineages results in mice with relatively normal locomotion but unable to perform coordinated motor tasks. Altogether, we reveal that proprioceptive nuclei in the spinal cord and medulla develop from more than one progenitor source, suggesting an avenue to uncover distinct proprioceptive functions.


Assuntos
Linhagem da Célula , Cerebelo/citologia , Neurogênese , Neurônios Aferentes/citologia , Propriocepção , Corno Dorsal da Medula Espinal/citologia , Vias Aferentes/citologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cerebelo/embriologia , Cerebelo/fisiologia , Feminino , Masculino , Bulbo/citologia , Bulbo/embriologia , Bulbo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Movimento , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurônios Aferentes/metabolismo , Corno Dorsal da Medula Espinal/embriologia , Corno Dorsal da Medula Espinal/fisiologia
11.
Dev Cell ; 25(2): 182-95, 2013 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-23639443

RESUMO

Generating a balanced network of inhibitory and excitatory neurons during development requires precise transcriptional control. In the dorsal spinal cord, Ptf1a, a basic helix-loop-helix (bHLH) transcription activator, maintains this delicate balance by inducing homeodomain (HD) transcription factors such as Pax2 to specify the inhibitory lineage while suppressing HD factors such as Tlx1/3 that specify the excitatory lineage. We uncover the mechanism by which Ptf1a represses excitatory cell fate in the inhibitory lineage. We identify Prdm13 as a direct target of Ptf1a and reveal that Prdm13 actively represses excitatory cell fate by binding to regulatory sequences near the Tlx1 and Tlx3 genes to silence their expression. Prdm13 acts through multiple mechanisms, including interactions with the bHLH factor Ascl1, to repress Ascl1 activation of Tlx3. Thus, Prdm13 is a key component of a highly coordinated transcriptional network that determines the balance of inhibitory versus excitatory neurons in the dorsal spinal cord.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Homeodomínio/metabolismo , Neurônios/metabolismo , Medula Espinal/metabolismo , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Western Blotting , Diferenciação Celular , Células Cultivadas , Embrião de Galinha , Imunoprecipitação da Cromatina , Primers do DNA/química , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Feminino , Imunofluorescência , Proteínas de Homeodomínio/genética , Hibridização In Situ , Camundongos , Camundongos Knockout , Neurônios/citologia , Fator de Transcrição PAX2/metabolismo , RNA Interferente Pequeno/genética , Medula Espinal/citologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Dedos de Zinco
12.
J Neurosci ; 31(30): 10859-71, 2011 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-21795538

RESUMO

Neural basic helix-loop-helix (bHLH) transcription factors are crucial in regulating the differentiation and neuronal subtype specification of neurons. Precisely how these transcription factors direct such processes is largely unknown due to the lack of bona fide targets in vivo. Genetic evidence suggests that bHLH factors have shared targets in their common differentiation role, but unique targets with respect to their distinct roles in neuronal subtype specification. However, whether neuronal subtype-specific targets exist remains an unsolved question. To address this question, we focused on Atoh1 (Math1), a bHLH transcription factor that specifies distinct neuronal subtypes of the proprioceptive pathway in mammals including the dI1 (dorsal interneuron 1) population of the developing spinal cord. We identified transcripts unique to the Atoh1-derived lineage using microarray analyses of specific bHLH-sorted populations from mouse. Chromatin immunoprecipitation-sequencing experiments followed by enhancer reporter analyses identified five direct neuronal subtype-specific targets of Atoh1 in vivo along with their Atoh1-responsive enhancers. These targets, Klf7, Rab15, Rassf4, Selm, and Smad7, have diverse functions that range from transcription factors to regulators of endocytosis and signaling pathways. Only Rab15 and Selm are expressed across several different Atoh1-specified neuronal subtypes including external granule cells (external granule cell layer) in the developing cerebellum, hair cells of the inner ear, and Merkel cells. Our work establishes on a molecular level that neuronal differentiation bHLH transcription factors have distinct lineage-specific targets.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Neurônios/citologia , Neurônios/fisiologia , Medula Espinal/citologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Animais Recém-Nascidos , Embrião de Galinha , Imunoprecipitação da Cromatina/métodos , Biologia Computacional , Eletroporação/métodos , Embrião de Mamíferos , Feminino , Perfilação da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Homeodomínio/metabolismo , Cinesinas/genética , Proteínas com Homeodomínio LIM , Masculino , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo
13.
Neuron ; 58(1): 3-5, 2008 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-18400155

RESUMO

How basic helix-loop-helix (bHLH) transcription factors control neurogenesis and neuronal subtype specification through transcriptional mechanisms mediated by cell signaling remains to be fully elucidated. In this issue of Neuron, Ma et al. discover that phosphorylation via GSK3 of the bHLH factor, Ngn2 (Neurog2), adds a neuronal subtype-specific program to its functional repertoire that is activated in the developing neural tube in vivo.


Assuntos
Diferenciação Celular/fisiologia , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Animais , Humanos , Fosforilação , Células-Tronco/citologia , Células-Tronco/metabolismo
14.
EMBO J ; 26(15): 3616-28, 2007 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-17627279

RESUMO

A critical step of neuronal terminal differentiation is the permanent withdrawal from the cell cycle that requires the silencing of genes that drive mitosis. Here, we describe that the alpha isoform of the heterochromatin protein 1 (HP1) protein family exerts such silencing on several E2F-targeted genes. Among the different isoforms, HP1alpha levels progressively increase throughout differentiation and take over HP1gamma binding on E2F sites in mature neurons. When overexpressed, only HP1alpha is able to ensure a timed repression of E2F genes. Specific inhibition of HP1alpha expression drives neuronal progenitors either towards death or cell cycle progression, yet preventing the expression of the neuronal marker microtubule-associated protein 2. Furthermore, we provide evidence that this mechanism occurs in cerebellar granule neurons in vivo, during the postnatal development of the cerebellum. Finally, our results suggest that E2F-targeted genes are packaged into higher-order chromatin structures in mature neurons relative to neuroblasts, likely reflecting a transition from a 'repressed' versus 'silenced' status of these genes. Together, these data present new epigenetic regulations orchestrated by HP1 isoforms, critical for permanent cell cycle exit during neuronal differentiation.


Assuntos
Diferenciação Celular , Proteínas Cromossômicas não Histona/fisiologia , Fatores de Transcrição E2F/fisiologia , Inativação Gênica , Neurônios/citologia , Animais , Sequência de Bases , Linhagem da Célula , Células Cultivadas , Homólogo 5 da Proteína Cromobox , Citometria de Fluxo , Camundongos , RNA Interferente Pequeno
15.
Nature ; 445(7127): 550-3, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17187053

RESUMO

Voltage-gated potassium (Kv) channels, essential for regulating potassium uptake and cell volume in plants and electrical excitability in animals, switch between conducting and non-conducting states as a result of conformational changes in the four voltage-sensing domains (VSDs) that surround the channel pore. This process, known as gating, is initiated by a cluster of positively charged residues on the fourth transmembrane segment (S4) of each VSD, which drives the VSD into a 'down state' at negative voltages and an 'up state' at more positive voltages. The crystal structure of Kv1.2 probably corresponds to the up state, but the local environment of S4 in the down state and its motion in voltage gating remains unresolved. Here we employed several conditional lethal/second-site suppressor yeast screens to determine the transmembrane packing of the VSD in the down state. This screen relies on the ability of KAT1, a eukaryotic Kv channel, to conduct potassium when its VSDs are in the down state, thereby rescuing potassium-transport-deficient yeast. Starting with KAT1 channels bearing conditional lethal mutations, we identified second-site suppressor mutations throughout the VSD that recover yeast growth. We then constructed a down state model of the channel using six pairs of interacting residues as structural constraints and verified this model by engineering suppressor mutations on the basis of spatial considerations. A comparison of this down state model with the up state Kv1.2 structure suggests that the VSDs undergo large rearrangements during gating, whereas the S4 segment remains positioned between the central pore and the remainder of the VSD in both states.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Ativação do Canal Iônico , Canais de Potássio Corretores do Fluxo de Internalização/química , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Potássio/metabolismo , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Condutividade Elétrica , Genes Letais/genética , Transporte de Íons , Canal de Potássio Kv1.2/química , Canal de Potássio Kv1.2/metabolismo , Modelos Moleculares , Canais de Potássio Corretores do Fluxo de Internalização/genética , Estrutura Terciária de Proteína , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade , Supressão Genética/genética
16.
Nat Rev Neurosci ; 7(7): 548-62, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16791144

RESUMO

Voltage-gated ion channels have to be at the right place in the right number to endow individual neurons with their specific character. Their biophysical properties together with their spatial distribution define the signalling characteristics of a neuron. Improper channel localization could cause communication defects in a neuronal network. This review covers recent studies of mechanisms for targeting voltage-gated ion channels to axons and dendrites, including trafficking, retention and endocytosis pathways for the preferential localization of particular ion channels. We also discuss how the spatial localization of these channels might contribute to the electrical excitability of neurons, and consider the need for future work in this emerging field.


Assuntos
Axônios/fisiologia , Dendritos/fisiologia , Ativação do Canal Iônico/fisiologia , Potenciais de Ação/fisiologia , Animais , Humanos , Mutação , Neurônios/fisiologia , Transporte Proteico/fisiologia
17.
Neuron ; 47(3): 395-406, 2005 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-16055063

RESUMO

In voltage-gated ion channels, the S4 transmembrane segment responds to changes in membrane potential and controls channel opening. The local environment of S4 is still unknown, even regarding the basic question as to whether S4 is close to the pore domain. Relying on the ability of functional KAT1 channels to rescue potassium (K+) transport-deficient yeast, we have performed an unbiased mutagenesis screen aimed at determining whether S4 packs against S5 of the pore domain. Starting with semilethal mutations of surface-exposed S5 residues of the KAT1 pore domain, we have screened randomly mutagenized libraries of S4 or S1-S3 for second-site suppressors. Our study identifies two S4 residues that interact in a highly specific manner with two S5 residues in the middle of the membrane-spanning regions, supporting a model in which the S4 voltage sensor packs against the pore domain in the hyperpolarized, or "down," state of S4.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/química , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Animais , Proteínas de Arabidopsis/genética , Eletrofisiologia , Genes Letais , Modelos Moleculares , Mutação , Oócitos , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Xenopus , Leveduras
18.
Mol Cell Biol ; 22(24): 8601-11, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12446779

RESUMO

The human genome is far smaller than originally estimated, and one explanation is that alternative splicing creates greater proteomic complexity than a simple count of open reading frames would suggest. The p53 homologue p63, for example, is a tetrameric transcription factor implicated in epithelial development and expressed as at least six isoforms with widely differing transactivation potential. In particular, p63alpha isoforms contain a 27-kDa C-terminal region that drastically reduces their activity and is of clear biological importance, since patients with deletions in this C terminus have phenotypes very similar to patients with mutations in the DNA-binding domain. We have identified a novel domain within this C terminus that is necessary and sufficient for transcriptional inhibition and which acts by binding to a region in the N-terminal transactivation domain of p63 homologous to the MDM2 binding site in p53. Based on this mechanism, we provide a model that explains the transactivation potential of homo- and heterotetramers composed of different p63 isoforms and their effect on p53.


Assuntos
Regulação da Expressão Gênica , Proteínas de Membrana , Fosfoproteínas/metabolismo , Isoformas de Proteínas/metabolismo , Transativadores/metabolismo , Transcrição Gênica , Sequência de Aminoácidos , Animais , Sítios de Ligação , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA , Genes Reporter , Genes Supressores de Tumor , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Peptídeos/genética , Peptídeos/metabolismo , Fenótipo , Fosfoproteínas/genética , Isoformas de Proteínas/genética , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Alinhamento de Sequência , Transativadores/genética , Fatores de Transcrição , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...