Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Pharmacol Transl Sci ; 7(4): 1178-1190, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38633583

RESUMO

A promising alternative for cancer treatment involves targeted inhibition of the epigenetic regulator bromodomain-containing protein 4 (BRD4); however, available BRD4 inhibitors are constrained by their potency, oral bioavailability, and cytotoxicity. Herein, to overcome the drawback of the translational BRD4 inhibitors, we describe a novel BRD4-p53 inhibitor, SDU-071, which suppresses BRD4 interaction with the p53 tumor suppressor and its biological activity in MDA-MB-231 triple-negative breast cancer (TNBC) cells in vitro and in vivo. This novel small-molecule BRD4-p53 inhibitor suppresses cell proliferation, migration, and invasion by downregulating the expression of BRD4-targeted genes, such as c-Myc and Mucin 5AC, and inducing cell cycle arrest and apoptosis, as demonstrated in cultured MDA-MB-231 TNBC cells. Its antitumor activity is illustrated in an orthotopic mouse xenograft mammary tumor model. Overall, our results show that SDU-071 is a viable option for potentially treating TNBC as a new BRD4-p53 inhibitor.

2.
Mol Cell ; 84(2): 202-220.e15, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38103559

RESUMO

Compounds binding to the bromodomains of bromodomain and extra-terminal (BET) family proteins, particularly BRD4, are promising anticancer agents. Nevertheless, side effects and drug resistance pose significant obstacles in BET-based therapeutics development. Using high-throughput screening of a 200,000-compound library, we identified small molecules targeting a phosphorylated intrinsically disordered region (IDR) of BRD4 that inhibit phospho-BRD4 (pBRD4)-dependent human papillomavirus (HPV) genome replication in HPV-containing keratinocytes. Proteomic profiling identified two DNA damage response factors-53BP1 and BARD1-crucial for differentiation-associated HPV genome amplification. pBRD4-mediated recruitment of 53BP1 and BARD1 to the HPV origin of replication occurs in a spatiotemporal and BRD4 long (BRD4-L) and short (BRD4-S) isoform-specific manner. This recruitment is disrupted by phospho-IDR-targeting compounds with little perturbation of the global transcriptome and BRD4 chromatin landscape. The discovery of these protein-protein interaction inhibitors (PPIi) not only demonstrates the feasibility of developing PPIi against phospho-IDRs but also uncovers antiviral agents targeting an epigenetic regulator essential for virus-host interaction and cancer development.


Assuntos
Infecções por Papillomavirus , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Papillomavirus Humano , Infecções por Papillomavirus/tratamento farmacológico , Infecções por Papillomavirus/genética , Proteômica , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Papillomaviridae/genética , Papillomaviridae/metabolismo , Proteínas Virais/genética , Replicação Viral/fisiologia , Reparo do DNA , Proteínas que Contêm Bromodomínio
3.
J Med Chem ; 65(3): 2388-2408, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34982556

RESUMO

Bromodomain-containing protein 4 (BRD4) is an emerging epigenetic drug target for intractable inflammatory disorders. The lack of highly selective inhibitors among BRD4 family members has stalled the collective understanding of this critical system and the progress toward clinical development of effective therapeutics. Here we report the discovery of a potent BRD4 bromodomain 1 (BD1)-selective inhibitor ZL0590 (52) targeting a unique, previously unreported binding site, while exhibiting significant anti-inflammatory activities in vitro and in vivo. The X-ray crystal structural analysis of ZL0590 in complex with human BRD4 BD1 and the associated mutagenesis study illustrate a first-in-class nonacetylated lysine (KAc) binding site located at the helix αB and αC interface that contains important BRD4 residues (e.g., Glu151) not commonly shared among other family members and is spatially distinct from the classic KAc recognition pocket. This new finding facilitates further elucidation of the complex biology underpinning bromodomain specificity among BRD4 and its protein-protein interaction partners.


Assuntos
Anti-Inflamatórios/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas Nucleares/antagonistas & inibidores , Compostos de Fenilureia/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacocinética , Sítios de Ligação , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Cristalografia por Raios X , Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Compostos de Fenilureia/síntese química , Compostos de Fenilureia/metabolismo , Compostos de Fenilureia/farmacocinética , Ligação Proteica , Domínios Proteicos , Ratos , Fatores de Transcrição/metabolismo
4.
Mol Cell ; 78(6): 1114-1132.e10, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32446320

RESUMO

Bromodomain-containing protein 4 (BRD4) is a cancer therapeutic target in ongoing clinical trials disrupting primarily BRD4-regulated transcription programs. The role of BRD4 in cancer has been attributed mainly to the abundant long isoform (BRD4-L). Here we show, by isoform-specific knockdown and endogenous protein detection, along with transgene expression, the less abundant BRD4 short isoform (BRD4-S) is oncogenic while BRD4-L is tumor-suppressive in breast cancer cell proliferation and migration, as well as mammary tumor formation and metastasis. Through integrated RNA-seq, genome-wide ChIP-seq, and CUT&RUN association profiling, we identify the Engrailed-1 (EN1) homeobox transcription factor as a key BRD4-S coregulator, particularly in triple-negative breast cancer. BRD4-S and EN1 comodulate the extracellular matrix (ECM)-associated matrisome network, including type II cystatin gene cluster, mucin 5, and cathepsin loci, via enhancer regulation of cancer-associated genes and pathways. Our work highlights the importance of targeted therapies for the oncogenic, but not tumor-suppressive, activity of BRD4.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Animais , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Genes Homeobox , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Invasividade Neoplásica , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas/antagonistas & inibidores , Proteínas/metabolismo , Transcrição Gênica/genética , Neoplasias de Mama Triplo Negativas/genética
5.
Nucleic Acids Res ; 46(13): 6576-6591, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-29860315

RESUMO

Hypoxia-inducible factor 1 (HIF-1) is a master transcriptional regulator in response to hypoxia and its transcriptional activity is crucial for cancer cell mobility. Here we present evidence for a novel epigenetic mechanism that regulates HIF-1 transcriptional activity and HIF-1-dependent migration of glioblastoma cells. The lysine methyltransferases G9a and GLP directly bound to the α subunit of HIF-1 (HIF-1α) and catalyzed mono- and di-methylation of HIF-1α at lysine (K) 674 in vitro and in vivo. K674 methylation suppressed HIF-1 transcriptional activity and expression of its downstream target genes PTGS1, NDNF, SLC6A3, and Linc01132 in human glioblastoma U251MG cells. Inhibition of HIF-1 by K674 methylation is due to reduced HIF-1α transactivation domain function but not increased HIF-1α protein degradation or impaired binding of HIF-1 to hypoxia response elements. K674 methylation significantly decreased HIF-1-dependent migration of U251MG cells under hypoxia. Importantly, we found that G9a was downregulated by hypoxia in glioblastoma, which was inversely correlated with PTGS1 expression and survival of patients with glioblastoma. Therefore, our findings uncover a hypoxia-induced negative feedback mechanism that maintains high activity of HIF-1 and cell mobility in human glioblastoma.


Assuntos
Autoantígenos/metabolismo , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Proteínas da Matriz do Complexo de Golgi/metabolismo , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Transcrição Gênica , Hipóxia Celular , Linhagem Celular , Movimento Celular , Glioblastoma/metabolismo , Glioblastoma/fisiopatologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/química , Lisina/metabolismo , Metilação , Elementos de Resposta
6.
Mol Cell ; 49(5): 843-57, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23317504

RESUMO

Bromodomain-containing protein 4 (Brd4) is an epigenetic reader and transcriptional regulator recently identified as a cancer therapeutic target for acute myeloid leukemia, multiple myeloma, and Burkitt's lymphoma. Although chromatin targeting is a crucial function of Brd4, there is little understanding of how bromodomains that bind acetylated histones are regulated, nor how the gene-specific activity of Brd4 is determined. Via interaction screen and domain mapping, we identified p53 as a functional partner of Brd4. Interestingly, Brd4 association with p53 is modulated by casein kinase II (CK2)-mediated phosphorylation of a conserved acidic region in Brd4 that selectively contacts either a juxtaposed bromodomain or an adjacent basic region to dictate the ability of Brd4 binding to chromatin and also the recruitment of p53 to regulated promoters. The unmasking of bromodomains and activator recruitment, concurrently triggered by the CK2 phospho switch, provide an intriguing mechanism for gene-specific targeting by a universal epigenetic reader.


Assuntos
Caseína Quinase II/metabolismo , Cromatina/metabolismo , Marcação de Genes , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Caseína Quinase II/genética , Proteínas de Ciclo Celular , Cromatina/genética , Células HCT116 , Células HEK293 , Histonas/química , Histonas/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Transcrição Gênica , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
7.
Bio Protoc ; 3(20)2013.
Artigo em Inglês | MEDLINE | ID: mdl-27390756

RESUMO

Bimolecular Fluorescence Complementation (BiFC) assay is a method used to directly visualize protein-protein interaction in vivo using live-cell imaging or fixed cells. This protocol described here is based on our recent paper describing the functional association of human chromatin adaptor and transcription cofactor Brd4 with p53 tumor suppressor protein (Wu et al., 2013). BiFC was first described by Hu et al. (2002) using two non-fluorescent protein fragments of enhanced yellow fluorescent protein (EYFP), which is an Aequorea victoria GFP variant protein, fused respectively to a Rel family protein and a bZIP family transcription factor to investigate interactions between these two family members in living cells. The YFP was later improved by introducing mutations to reduce its sensitivity to pH and chloride ions, thus generating a super-enhanced YFP, named Venus fluorescent protein, without showing diminished fluorescence at 37 °C as typically observed with EYFP (Nagai et al., 2006). The fluorescence signal is regenerated by complementation of two non-fluorescent fragments (e.g., the Venus N-terminal 1-158 amino acid residues, called Venus-N, and its C-terminal 159-239 amino acid residues, named Venus-C; see Figure 1A and Gully et al., 2012; Ding et al., 2006; Kerppola, 2006) that are brought together by interaction between their respective fusion partners (e.g., Venus-N to p53, and Venus-C to the PDID domain of human Brd4; see Figure 1B and 1C). The intensity and cellular location of the regenerated fluorescence signals can be detected by fluorescence microscope. The advantages of the proximity-based BiFC assay are: first, it allows a direct visualization of spatial and temporal interaction between two partner proteins in vivo; second, the fluorescence signal provides a sensitive readout for detecting protein-protein interaction even at a low expression level comparable to that of the endogenous proteins; third, the intensity of the fluorescence signal is proportional to the strength of protein-protein interaction (Morell et al., 2008); and fourth, the BiFC signals are derived from intrinsic protein-protein interaction, rather than from extrinsic fluorophores that may not reflect true protein-protein interaction due to their nonspecific association with cellular macromolecules or subcellular compartments. However, some limitations of BiFC include slow maturation (T1/2 ~ 1 h) of an eventually stable BiFC complex (Hu et al., 2002), making it unsuitable for real-time observation of transient interaction that disappears prior to BiFC detection, and enhanced BiFC background at high expression levels due to fusion-independent association between two non-fluorescent fragments association. BiFC signals generated by in vivo protein-protein interaction can be validated by amino acid mutation introduced at the protein-protein contact surfaces. This imaging technique has been widely used in different cell types and organisms (Kerppola, 2006).

8.
Mol Cell Biol ; 30(10): 2411-23, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20212087

RESUMO

The small nuclear RNA (snRNA)-activating protein complex (SNAPc) is essential for transcription of genes coding for the snRNAs (U1, U2, etc.). In Drosophila melanogaster, the heterotrimeric DmSNAPc recognizes a 21-bp DNA sequence, the proximal sequence element A (PSEA), located approximately 40 to 60 bp upstream of the transcription start site. Upon binding the PSEA, DmSNAPc establishes RNA polymerase II preinitiation complexes on U1 to U5 promoters but RNA polymerase III preinitiation complexes on U6 promoters. Minor differences in nucleotide sequence of the U1 and U6 PSEAs determine RNA polymerase specificity; moreover, DmSNAPc adopts different conformations on these different PSEAs. We have proposed that such conformational differences in DmSNAPc play a key role in determining the different polymerase specificities of the U1 and U6 promoters. To better understand the structure of DmSNAPc-PSEA complexes, we have developed a novel protocol that combines site-specific protein-DNA photo-cross-linking with site-specific chemical cleavage of the protein. This protocol has allowed us to map regions within each of the three DmSNAPc subunits that contact specific nucleotide positions within the U1 and U6 PSEAs. These data help to establish the orientation of each DmSNAPc subunit on the DNA and have revealed cases in which different domains of the subunits differentially contact the U1 versus U6 PSEAs.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Regiões Promotoras Genéticas , Subunidades Proteicas/metabolismo , RNA Nuclear Pequeno/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Reagentes de Ligações Cruzadas/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , Humanos , Dados de Sequência Molecular , Nucleotídeos/metabolismo , Subunidades Proteicas/genética , Alinhamento de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
FEBS Lett ; 582(27): 3734-8, 2008 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-18948103

RESUMO

Small nuclear RNA activating protein complex (SNAPc) is a multi-subunit transcription factor required for expression of small nuclear RNA genes. This protein binds to a promoter element located approximately 40-65 bp upstream of the transcription start site. In Drosophila melanogaster, DmSNAPc contains three distinct polypeptide subunits: DmSNAP190, DmSNAP50, and DmSNAP43. The subunit stoichiometry in SNAPc complexed with DNA has not been examined. Therefore, the ability of differently tagged but otherwise identical subunits to associate with each other into the same protein-DNA complex was assayed by antibody super-shift analysis. The results reveal that DmSNAPc contains only a single copy of each of the three subunits.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Ensaio de Desvio de Mobilidade Eletroforética , Dados de Sequência Molecular , Subunidades Proteicas/metabolismo , RNA Nuclear Pequeno/biossíntese , Fatores de Transcrição/genética
10.
Nucleic Acids Res ; 33(20): 6579-86, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16314318

RESUMO

Most of the major spliceosomal small nuclear RNAs (snRNAs) (i.e. U1, U2, U4 and U5) are synthesized by RNA polymerase II (pol II). In Drosophila melanogaster, the 5'-flanking DNA of these genes contains two conserved elements: the proximal sequence element A (PSEA) and the proximal sequence element B (PSEB). The PSEA is essential for transcription and is recognized by DmSNAPc, a multi-subunit protein complex. Previous site-specific protein-DNA photo-cross-linking assays demonstrated that one of the subunits of DmSNAPc, DmSNAP43, remains in close contact with the DNA for 20 bp beyond the 3' end of the PSEA, a region that contains the PSEB. The current work demonstrates that mutation of the PSEB does not abolish the cross-linking of DmSNAP43 to the PSEB. Thus the U1 PSEA alone is capable of bringing DmSNAP43 into close contact with this downstream DNA. However, mutation of the PSEB perturbs the cross-linking pattern. In concordance with these findings, PSEB mutations result in a 2- to 4-fold reduction in U1 promoter activity when assayed by transient transfection.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regiões Promotoras Genéticas , RNA Nuclear Pequeno/genética , Elementos de Resposta , Fatores de Transcrição/metabolismo , Animais , Pareamento de Bases , Células Cultivadas , DNA/química , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mutação , TATA Box , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...