Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38672694

RESUMO

The Cancers Editorial Office retracts the article, "MicroRNA-21 Plays Multiple Oncometabolic Roles in the Process of NAFLD-Related Hepatocellular Carcinoma via PI3K/AKT, TGF-ß, and STAT3 Signaling" [...].

2.
Biomedicines ; 11(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36831035

RESUMO

Neuronal circuits regulating appetite are dominated by arcuate nucleus neurons, which include appetite-promoting and -suppressing neurons that release the orexigenic neuropeptide agouti-related protein (AgRP) and anorexigenic neuropeptide pro-opiomelanocortin, respectively, to compete for melanocortin receptors to modulate feeding behavior. In this study, we expressed novel agrp promoters, including different lengths of the 5' flanking regions of the agrp gene (4749 bp) in the zebrafish genome. We used the agrp promoter to derive the enhanced green fluorescent protein (EGFP)-nitroreductase (NTR) fusion protein, allowing expression of the green fluorescence signal in the AgRP neurons. Then, we treated the transgenic zebrafish AgRP4.7NTR (Tg [agrp-EGFP-NTR]) with metronidazole to ablate the AgRP neurons in the larvae stage and observed a decline in their appetite and growth. The expression of most orexigenic and growth hormone/insulin-like growth factor axis genes decreased, whereas that of several anorexigenic genes increased. Our findings demonstrate that AgRP is a critical regulator of neuronal signaling for zebrafish appetite and energy intake control. Thus, AgRP4.7NTR can be used as a drug-screening platform for therapeutic targets to treat human appetite disorders, including obesity. Furthermore, the unique agrp promoter we identified can be a powerful tool for research on AgRP neurons, especially AgRP neuron-mediated pathways in the hypothalamus, and appetite.

4.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613558

RESUMO

Lipid metabolism dysfunction is related to clinical disorders including obesity, cancer, liver steatosis, and cardiomyopathy. Impaired lipolytic enzymes result in altered release of free fatty acids. The dramatic change in dyslipidemia is important in lipotoxic cardiomyopathy. Adipose triglyceride lipase (ATGL) catalyzes the lipolysis of triacylglycerol to reduce intramyocardial triglyceride levels in the heart and improve myocardial function. We examined the role of ATGL in metabolic cardiomyopathy by developing an Atgl knockout (ALKO) zebrafish model of metabolic cardiomyopathy disease by continuously expressing CRISPR/Cas9 protein and atgl gene guide RNAs (gRNAs). The expressed Cas9 protein bound to four gRNAs targeting the atgl gene locus, facilitating systemic gene KO. Ablation of Atgl interfered with lipid metabolism, which induced hyperlipidemia and hyperglycemia. ALKO adults and embryos displayed hypertrophic hearts. ALKO presented a typical dilated cardiomyopathy profile with a remarkable reduction in four sarcomere genes (myosin heavy chain 7-like, actin alpha cardiac muscle 1b, myosin binding protein C3, and troponin T type 2a) and two Ca2+ handling regulator genes (tropomyosin 4b and ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 2b). Immune cell infiltration in cardiac tissue of ALKO provided direct evidence of advanced metabolic cardiomyopathy. The presently described model could become a powerful tool to clarify the underlying mechanism between metabolic disorders and cardiomyopathies.


Assuntos
Cardiomiopatias , Síndrome Metabólica , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Síndrome Metabólica/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Lipase/genética , Lipase/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Lipólise/genética , Triglicerídeos/metabolismo , Tecido Adiposo/metabolismo
5.
Cells ; 10(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34943942

RESUMO

Obesity is closely linked to metabolic diseases, particularly non-alcoholic steatohepatitis (NASH) or non-alcoholic fatty liver disease (NAFLD), ultimately leading to hepatocellular carcinoma (HCC). However, the molecular mechanisms of NASH-associated HCC (NAHCC) remain elusive. To explore the impact of Max dimerization protein 3 (MXD3), a transcription factor that regulates several cellular functions in disorders associated with metabolic diseases, we conditionally expressed Mxd3 proteins using Tet-on mxd3 transgenic zebrafish (MXs) with doxycycline (MXs + Dox) or without doxycycline (MXs - Dox) treatment. Overexpression of global MXD3 (gMX) or hepatic Mxd3 (hMX) was associated with obesity-related NAFLD pathophysiology in gMX + Dox, and liver fibrosis and HCC in hMX + Dox. Oil Red O (ORO)-stained signals were seen in intravascular blood vessels and liver buds of larval gMX + Dox, indicating that Mxd3 functionally promotes lipogenesis. The gMX + Dox-treated young adults exhibited an increase in body weight and visceral fat accumulation. The hMX + Dox-treated young adults showed normal body characteristics but exhibited liver steatosis and NASH-like phenotypes. Subsequently, steatohepatitis, liver fibrosis, and NAHCC were found in 6-month-old gMX + Dox adults compared with gMX - Dox adults at the same stage. Overexpression of Mxd3 also enhanced AR expression accompanied by the increase of AR-signaling pathways resulting in hepatocarcinogenesis in males. Our results demonstrate that global actions of Mxd3 are central to the initiation of obesity in the gMX zebrafish through their effects on adipogenesis and that MXD3 could serve as a therapeutic target for obesity-associated liver diseases.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Obesidade/genética , Receptores Androgênicos/genética , Proteínas Repressoras/genética , Adipogenia/genética , Animais , Animais Geneticamente Modificados/genética , Carcinoma Hepatocelular/complicações , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Doxiciclina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lipogênese/efeitos dos fármacos , Fígado/metabolismo , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/complicações , Obesidade/tratamento farmacológico , Obesidade/patologia , Transdução de Sinais/genética , Peixe-Zebra/genética
6.
Biomedicines ; 9(8)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34440144

RESUMO

The functions of anorexigenic neurons secreting proopiomelanocortin (POMC)/alpha-melanocyte-stimulating hormone (α-MSH) of the melanocortin system in the hypothalamus in vertebrates are energy homeostasis, food intake, and body weight regulation. However, the mechanisms remain elusive. This article reports on zebrafish that have been genetically engineered to produce α-MSH mutants, α-MSH-7aa and α-MSH-8aa, selectively lacking 7 and 8 amino acids within the α-MSH region, but retaining most of the other normal melanocortin-signaling (Pomc-derived) peptides. The α-MSH mutants exhibited hyperphagic phenotypes leading to body weight gain, as observed in human patients and mammalian models. The actions of several genes regulating appetite in zebrafish are similar to those in mammals when analyzed using gene expression analysis. These include four selected orexigenic genes: Promelanin-concentrating hormone (pmch), agouti-related protein 2 (agrp2), neuropeptide Y (npy), and hypothalamic hypocretin/orexin (hcrt). We also study five selected anorexigenic genes: Brain-derived neurotrophic factor (bdnf), single-minded homolog 1-a (sim1a), corticotropin-releasing hormone b (crhb), thyrotropin-releasing hormone (trh), and prohormone convertase 2 (pcsk2). The orexigenic actions of α-MSH mutants are rescued completely after hindbrain ventricle injection with a synthetic analog of α-MSH and a melanocortin receptor agonist, Melanotan II. We evaluate the adverse effects of MSH depletion on energy balance using the Alamar Blue metabolic rate assay. Our results show that α-MSH is a key regulator of POMC signaling in appetite regulation and energy expenditure, suggesting that it might be a potential therapeutic target for treating human obesity.

7.
Cancers (Basel) ; 13(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668153

RESUMO

MicroRNA-21 (miR-21) is one of the most frequently upregulated miRNAs in liver diseases such as nonalcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC). However, mechanistic pathways that connect NAFLD and HCC remain elusive. We developed a doxycycline (Dox)-inducible transgenic zebrafish model (LmiR21) which exhibited an upregulation of miR-21 in the liver, which in turn induced the full spectrum of NAFLD, including steatosis, inflammation, fibrosis, and HCC, in the LmiR21 fish. Diethylnitrosamine (DEN) treatment led to accelerated liver tumor formation and exacerbated their aggressiveness. Moreover, prolonged miR-21 expression for up to ten months induced nonalcoholic steatohepatitis (NASH)-related HCC (NAHCC). Immunoblotting and immunostaining confirmed the presence of miR-21 regulatory proteins (i.e., PTEN, SMAD7, p-AKT, p-SMAD3, and p-STAT3) in human nonviral HCC tissues and LmiR21 models. Thus, we demonstrated that miR-21 can induce NAHCC via at least three mechanisms: First, the occurrence of hepatic steatosis increases with the decrease of ptenb, pparaa, and activation of the PI3K/AKT pathway; second, miR-21 induces hepatic inflammation (or NASH) through an increase in inflammatory gene expression via STAT3 signaling pathways, and induces liver fibrosis through hepatic stellate cell (HSC) activation and collagen deposition via TGF-ß/Smad3/Smad7 signaling pathways; finally, oncogenic activation of Smad3/Stat3 signaling pathways induces HCC. Our LmiR21 models showed similar molecular pathology to the human cancer samples in terms of initiation of lipid metabolism disorder, inflammation, fibrosis and activation of the PI3K/AKT, TGF-ß/SMADs and STAT3 (PTS) oncogenic signaling pathways. Our findings indicate that miR-21 plays critical roles in the mechanistic perspectives of NAHCC development via the PTS signaling networks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...