Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods ; 222: 112-121, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38215898

RESUMO

Design of molecules for candidate compound selection is one of the central challenges in drug discovery due to the complexity of chemical space and requirement of multi-parameter optimization. Here we present an application scenario-oriented platform (ID4Idea) for molecule generation in different scenarios of drug discovery. This platform utilizes both library or rule based and generative based algorithms (VAE, RNN, GAN, etc.), in combination with various AI learning types (pre-training, transfer learning, reinforcement learning, active learning, etc.) and input representations (1D SMILES, 2D graph, 3D shape, binding site, pharmacophore, etc.), to enable customized solutions for a given molecular design scenario. Besides the usual generation followed screening protocol, goal-directed molecule generation can also be conducted towards predefined goals, enhancing the efficiency of hit identification, lead finding, and lead optimization. We demonstrate the effectiveness of ID4Idea platform through case studies, showcasing customized solutions for different design tasks using various input information, such as binding pockets, pharmacophores, and compound representations. In addition, remaining challenges are discussed to unlock the full potential of AI models in drug discovery and pave the way for the development of novel therapeutics.


Assuntos
Desenho de Fármacos , Descoberta de Drogas , Sítios de Ligação , Algoritmos , Biblioteca Gênica
2.
Gels ; 9(9)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37754445

RESUMO

Acrylic materials exhibit favorable grouting repair performance. However, their curing products are easily inclined to drying shrinkage, and their concrete impermeability repair characteristics have seldom been investigated. To improve material properties, reveal the impermeability repair mechanism, and address drying shrinkage, this study proposed the addition of styrene-acrylate copolymer emulsion (styrene-acrylic emulsion) to the grouting material to prepare two-component acrylate grouting materials. Using orthogonal and single-factor tests combined with physical and mechanical properties, the mechanical properties and impermeability repair performance (physical and mechanical properties combined) of grouting materials were analyzed and studied, and the optimal ratio of each component of acrylate grouting materials was determined. Results show that (1) the hydrogel produced by the reaction of sodium methacrylate with hydroxyethyl acrylate has good physical and mechanical properties. (2) With the increase in the accelerator dosage, the setting time of slurry initially decreases and then increases; as the initiator dosage increases, the setting time of slurry decreases, which is negatively correlated with the initiator dosage. (3) Talcum powder can improve the physical and chemical properties of gel and enhance the reliability and durability of acrylate grouting materials, and the comprehensive performance is the best at a dosage of 3%. (4) Styrene-acrylic emulsion can increase the solid content and reduce the volume drying shrinkage when added to grouting materials. The fractured impermeable specimens were repaired by grouting with prepared acrylate grouting materials and cured for 24 h for the impermeability test, and the water pressure for the 24 h impermeability repair was 1.0 MPa. This study's results provide important reference and basis for revealing the impermeability principle of acrylate grouting materials and evaluating their impermeability.

3.
Nat Commun ; 13(1): 2675, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562524

RESUMO

ATP-sensitive potassium channels (KATP), composed of Kir6 and SUR subunits, convert the metabolic status of the cell into electrical signals. Pharmacological activation of SUR2- containing KATP channels by class of small molecule drugs known as KATP openers leads to hyperpolarization of excitable cells and to vasodilation. Thus, KATP openers could be used to treat cardiovascular diseases. However, where these vasodilators bind to KATP and how they activate the channel remains elusive. Here, we present cryo-EM structures of SUR2A and SUR2B subunits in complex with Mg-nucleotides and P1075 or levcromakalim, two chemically distinct KATP openers that are specific to SUR2. Both P1075 and levcromakalim bind to a common site in the transmembrane domain (TMD) of the SUR2 subunit, which is between TMD1 and TMD2 and is embraced by TM10, TM11, TM12, TM14, and TM17. These KATP openers synergize with Mg-nucleotides to stabilize SUR2 in the NBD-dimerized occluded state to activate the channel.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização , Vasodilatadores , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Cromakalim , Canais KATP/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Receptores de Sulfonilureias/genética , Receptores de Sulfonilureias/metabolismo , Vasodilatadores/metabolismo , Vasodilatadores/farmacologia
4.
Transl Lung Cancer Res ; 10(3): 1383-1396, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33889517

RESUMO

BACKGROUND: HER2 transmembrane domain (TMD) mutation has been reported as a rare driver mutation associated with advanced stage disease and a poor prognosis in patients with lung adenocarcinoma (LUAD). We aimed to comprehensively profile the genetic landscape and treatment response information of HER2 TMD-mutant LUAD. METHODS: An in-house database of 7,812 LUAD patients was screened for mutation prevalence. A multi-center cohort of 16 HER2 V659E-mutant patients and an external cohort of 38 HER2-mutant patients from cBioPortal with overall survival (OS) data were analyzed. Eight patients from the in-house cohort were included in the real-world study of treatment response. Molecular docking simulation and binding affinity prediction were performed. RESULTS: In Chinese LUAD, the prevalence of HER2 TMD mutation was 0.18% (14/7,812), and 0.14% (11/7,812) for the HER2 V659E mutation. The most recurrent co-alteration was TP53 mutation (n=4, 25%) and HER2 amplification (n=2, 12.5%). TMD-mutant patients were diagnosed at more advance stages (P<0.001) and had poorer OS (median OS 10.0 vs. 61.6 months, HR =7.9, 95% CI: 1.0-61.0, P<0.001) than non-TMD mutations. The overall response rate of targeted therapy, chemo-based therapy, and immunotherapy was 57.1%, 22.2%, and 0%, respectively. We postulated to challenge the resistance of tyrosine kinase inhibitor (TKI) with another with stronger binding energy to HER2 and supported the conclusion with a successful case. Additionally, we demonstrated a three-month response to the off-label use of pyrotinib in fifth-line therapy. CONCLUSIONS: Comapred with non-TMD mtuations, HER2 TMD mutation is a rare driver mutation with poorer prognosis in LUAD. Targeted therapy is the dominant choice for patients harboring this targetable mutation and longer OS could possibly be achieved through rechallenge with TKI of stronger binding affinity. Response to fifth-line pyrotinib was observed.

5.
RSC Adv ; 11(24): 14737-14745, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35423963

RESUMO

The RBD (receptor binding domain) of the SARS-CoV-2 virus S (spike) protein mediates viral cell attachment and serves as a promising target for therapeutics development. Mutations on the S-RBD may alter its affinity to the cell receptor and affect the potency of vaccines and antibodies. Here we used an in silico approach to predict how mutations on RBD affect its binding affinity to hACE2 (human angiotensin-converting enzyme2). The effect of all single point mutations on the interface was predicted. SPR assay results show that 6 out of 9 selected mutations can strengthen binding affinity. Our prediction has reasonable agreement with the previous deep mutational scan results and recently reported mutants. Our work demonstrated the in silico method as a powerful tool to forecast more powerful virus mutants, which will significantly benefit the development of broadly neutralizing vaccine and antibody.

6.
Phys Rev Lett ; 116(6): 068303, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26919019

RESUMO

Active fluids such as swarming bacteria and motile colloids exhibit exotic properties different from conventional equilibrium materials. As a peculiar example, a spherical tracer immersed inside active fluids shows an enhanced translational diffusion, orders of magnitude stronger than its intrinsic Brownian motion. Here, rather than spherical tracers, we investigate the diffusion of isolated ellipsoids in a quasi-two-dimensional bacterial bath. Our study shows a nonlinear enhancement of both translational and rotational diffusions of ellipsoids. More importantly, we uncover an anomalous coupling between particles' translation and rotation that is strictly prohibited in Brownian diffusion. The coupling reveals a counterintuitive anisotropic particle diffusion, where an ellipsoid diffuses fastest along its minor axis in its body frame. Combining experiments with theoretical modeling, we show that such an anomalous diffusive behavior arises from the generic straining flow of swimming bacteria. Our work illustrates an unexpected feature of active fluids and deepens our understanding of transport processes in microbiological systems.


Assuntos
Fenômenos Fisiológicos Bacterianos , Modelos Biológicos , Difusão , Escherichia coli/fisiologia , Suspensões
7.
Biophys J ; 109(11): 2287-94, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26636940

RESUMO

The functions and elasticities of the cell are largely related to the structures of the cytoskeletons underlying the lipid bilayer. Among various cell types, the red blood cell (RBC) possesses a relatively simple cytoskeletal structure. Underneath the membrane, the RBC cytoskeleton takes the form of a two-dimensional triangular network, consisting of nodes of actins (and other proteins) and edges of spectrins. Recent experiments focusing on the malaria-infected RBCs (iRBCs) show that there is a correlation between the elongation of spectrins in the cytoskeletal network and the stiffening of the iRBCs. Here we rationalize the correlation between these two observations by combining the wormlike chain model for single spectrins and the effective medium theory for the network elasticity. We specifically focus on how the disorders in the cytoskeletal network affect its macroscopic elasticity. Analytical and numerical solutions from our model reveal that the stiffness of the membrane increases with increasing end-to-end distances of spectrins, but has a nonmonotonic dependence on the variance of the end-to-end distance distributions. These predictions are verified quantitatively by our atomic force microscopy and micropipette aspiration measurements of iRBCs. The model may, from a molecular level, provide guidelines for future identification of new treatment methods for RBC-related diseases, such as malaria infection.


Assuntos
Citoesqueleto/metabolismo , Elasticidade , Eritrócitos/citologia , Modelos Biológicos , Fenômenos Biomecânicos , Eritrócitos/patologia , Plasmodium falciparum/citologia
8.
J Chem Phys ; 141(1): 015101, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-25005307

RESUMO

The macroscopic properties, the properties of individual components, and how those components interact with each other are three important aspects of a composited structure. An understanding of the interplay between them is essential in the study of complex systems. Using axonal cytoskeleton as an example system, here we perform a theoretical study of slender structures that can be coarse-grained as a simple smooth three-dimensional curve. We first present a generic model for such systems based on the fundamental theorem of curves. We use this generic model to demonstrate the applicability of the well-known worm-like chain (WLC) model to the network level and investigate the situation when the system is stretched by strong forces (weakly bending limit). We specifically studied recent experimental observations that revealed the hitherto unknown periodic cytoskeleton structure of axons and measured the longitudinal fluctuations. Instead of focusing on single molecules, we apply analytical results from the WLC model to both single molecule and network levels and focus on the relations between extensions and fluctuations. We show how this approach introduces constraints to possible local dynamics of the spectrin tetramers in the axonal cytoskeleton and finally suggests simple but self-consistent dynamics of spectrins in which the spectrins in one spatial period of axons fluctuate in-sync.


Assuntos
Axônios/química , Citoesqueleto/química , Espectrina/química , Membrana Celular/química , Elasticidade , Modelos Teóricos
9.
PLoS One ; 8(5): e64763, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23724092

RESUMO

Malaria is one of the most widespread and deadly human parasitic diseases caused by the Plasmodium (P.) species with the P. falciparum being the most deadly. The parasites are capable of invading red blood cells (RBCs) during infection. At the late stage of parasites' development, the parasites export proteins to the infected RBCs (iRBC) membrane and bind to receptors of surface proteins on the endothelial cells that line microvasculature walls. Resulting adhesion of iRBCs to microvasculature is one of the main sources of most complications during malaria infection. Therefore, it is important to develop a versatile and simple experimental method to quantitatively investigate iRBCs cytoadhesion and binding kinetics. Here, we developed an advanced flow based adhesion assay to demonstrate that iRBC's adhesion to endothelial CD36 receptor protein coated channels is a bistable process possessing a hysteresis loop. This finding confirms a recently developed model of cell adhesion which we used to fit our experimental data. We measured the contact area of iRBC under shear flow at different stages of infection using Total Internal Reflection Fluorescence (TIRF), and also adhesion receptor and ligand binding kinetics using Atomic Force Microscopy (AFM). With these parameters, we reproduced in our model the experimentally observed changes in adhesion properties of iRBCs accompanying parasite maturation and investigated the main mechanisms responsible for these changes, which are the contact area during the shear flow as well as the rupture area size.


Assuntos
Eritrócitos/patologia , Eritrócitos/parasitologia , Hemorreologia , Malária Falciparum/patologia , Plasmodium falciparum/fisiologia , Antígenos CD36/metabolismo , Adesão Celular , Fluorescência , Humanos , Cinética , Malária Falciparum/parasitologia , Microfluídica , Modelos Biológicos , Ligação Proteica , Proteínas de Protozoários/metabolismo , Temperatura
10.
Phys Rev Lett ; 103(12): 124501, 2009 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-19792441

RESUMO

The disconnection of an underwater bubble illustrates how slight initial asymmetries can prevent the formation of a finite-time singularity. Creating a singularity by focusing a finite amount of energy dynamically into a vanishingly small amount of material requires that the initial condition be perfectly symmetric. In reality, imperfections are always present. We show a slight azimuthal asymmetry in the initial shape of the bubble neck excites vibrations that persist over time. As a result, the focusing singularity is generically preempted by a smooth contact.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...