Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(39): 14130-14138, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37726897

RESUMO

In response to the problem of complex interaction between oil and water in the oil-water interface, especially heavy oil and water, this study investigated the effects of complex surfactants on the interaction of two phases and their aggregation characteristics by molecular dynamics simulation. The results showed that increasing the content of sodium lauryl polyether carboxylate (AEC-9Na) was beneficial to the coordination between it and alkyl glycoside (APG-10), improved the interfacial activity, and enhanced the interfacial stability of the composite system, and the best effect was achieved when AEC-9Na:APG-10 = 8:2. The thickness of the oil and water film on the oil-water interface was irregular. When the concentration of AEC-9Na was lower than that of APG-10, the total thickness of the interfacial film (ttotal) first increased. When the content of AEC-9Na is higher, a large number of sodium ions were adsorbed near the -COO- group of AEC-9Na, which will polarize out of the hydration layer structure and attract water molecules from the second hydration layer on the heavy oil surface to the first hydration layer through electrostatic interaction. Then, the thickness of the interface film was compressed, and the interface film was reduced. When the ratio increased to 10:0, the oil and water phase competed to adsorb surfactant molecules, and the headgroup tended to lay on the interface. Moreover, the hydrophilicity of the surfactant layer was weakened, and the thickness of the water film decreased. The distribution of surfactant was looser than 8:2, the light components of heavy oil molecules (saturated and aromatic hydrocarbons) entered the gap between surfactants in large quantities, and the hydrophobic tail chain tended to be laid on the oil-water interface. The oleophilicity of the surfactant layer increased, and the thickness of the oil film remarkably increased, so the total thickness of the interface film increased again.

2.
Heliyon ; 9(1): e12754, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36660455

RESUMO

Microalgae are potential biomass source for biodiesel production. However, their strong cell walls make efficient lipid extraction problematic. Disrupting the cell wall is a key point in enhancing lipid yield from microalgae biomass. A new type of ionic liquid (IL) has been suggested in this work as a potentially viable solvent to permeabilize the strong microalgae cell structure for the efficient extraction of lipids. Morphological changes in microalgae cells were studied before and after ionic liquid permeabilization to understand the mechanism of ionic liquid treatment. Among the three selected CO2-based alkyl carbamate ionic liquids, DIMCARP performed with the best extraction efficiency. The effects of extraction variables (temperature, time, ratio ionic liquid/Methanol, and solvent to biomass) on lipid extraction were examined via single-factor experiments coupled with response surface methodology (RSM) using a Box-Behnken design (BBD). The highest lipid yield (16.40%) was obtained after 45 min of extraction at 45 °C using a 9:1 ionic liquid to methanol and 7 mL of solvent to biomass ratio. Transesterification of lipids to make fatty acid methyl esters found that the most common fatty acids were C16:0, C18:2, and C18:3 (19.50%). The quality of the biodiesel made meets European and US standards.

3.
ACS Omega ; 5(45): 29300-29311, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33225161

RESUMO

Acrylamide and dimethyl diallyl ammonium chloride were used as monomers to synthesize a polyelectrolyte molecular deposition film (PMDF) injection agent for solving the problem of high injection pressure of water wells in low-permeability reservoirs. The structure of the PMDF injection agent was determined through IR and 1H nuclear magnetic resonance (NMR). The performance evaluation results show a change of wettability from hydrophilic to neutral wetting with the contact angle changing from 22.32 to 73.31° because of agent injection. It can also change the negative ζ-potential on the surface of the sand to a positive value. For comparison, core displacement experiments involving the commercial Gemini surfactant DF-G reveal that the effects of the depressurization of PMDF are more obvious than those of DF-G. The adsorption stability of the former is better than that of the latter. Especially, under a high-speed water flow of 30 pore volume (PV) injection, the depressurization rate of PMDF is still as high as 43.59%. Finally, the oil-water relative permeability curves and core nuclear magnetic resonance (NMR) experiments demonstrate that the PMDF treatment can reduce the irreducible water saturation, which indicated that the porosity of the flowable part of the core increased and the swept volume was increased. The suitable range of PMDF according to NMR pore-radius distribution within a low-permeability reservoir: the flowable partial pore required the throat radius greater than 0.01 µm.

4.
Polymers (Basel) ; 12(9)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32961938

RESUMO

A new type of chitosan-modified hyperbranched polymer (named HPDACS) was synthesized through the free-radical polymerization of surface-modified chitosan with acrylic acid (AA) and acrylamide (AM) to achieve an enhanced oil recovery. The optimal polymerization conditions of HPDACS were explored and its structure was characterized by Fourier-transform infrared spectroscopy, hydrogen nuclear magnetic resonance, and environmental scanning electron microscopy. The solution properties of HPDACS in ultrapure water and simulated brine were deeply studied and then compared with those of partially hydrolyzed polyacrylamide (HPAM) and a dendritic polymer named HPDA. The experimental results showed that HPDACS has a good thickening ability, temperature resistance, and salt resistance. Its viscosity retention rate exceeded 79.49% after 90 days of aging, thus meeting the performance requirements of polymer flooding. After mechanical shearing, the viscosity retention rates of HPDACS in ultrapure water and simulated brine were higher than those of HPAM and HPDA, indicating its excellent shear resistance and good viscoelasticity. Following a 95% water cut after preliminary water flooding, 0.3 pore volume (PV) and 1500 mg/L HPDACS solution flooding and extended water flooding could further increase the oil recovery by 19.20%, which was higher than that by HPAM at 10.65% and HPDA at 13.72%. This finding indicates that HPDACS has great potential for oil displacement.

5.
Front Chem ; 8: 393, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32509728

RESUMO

During CO2 flooding, serious gas channeling occurs in ultra-low permeability reservoirs due to the high mobility of CO2. The chief end of this work was to research the application of responsive nanoparticles for mobility control to enhance oil recovery. Responsive nanoparticles were developed based on the modification of nano-silica (SiO2) by 3-aminopropyltrimethoxysilane (KH540) via the Eschweiler-Clark reaction. The proof of concept for responsive nanoparticles was investigated by FT-IR, 1H-NMR, TEM, DLS, CO2/N2 response, wettability, plugging performance, and core flooding experiments. The results indicated that responsive nanoparticles exhibited a good response to control nanoparticle dispersity due to electrostatic interaction. Subsequently, responsive nanoparticles showed a better plugging capacity of 93.3% to control CO2 mobility, and more than 26% of the original oil was recovered. Moreover, the proposed responsive nanoparticles could revert oil-wet surfaces to water-wet, depending on surface adsorption to remove the oil from the surface of the rocks. The results of this work indicated that responsive nanoparticles might have potential applications for improved oil recovery in ultra-low permeability reservoirs.

6.
Front Chem ; 8: 146, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32181243

RESUMO

To improve CO2 adsorption performance of nanoparticle absorbents, a novel tertiary amine functionalized nano-SiO2 (NS-NR2) was synthesized based on the 3-aminopropyltrimethoxysilane (KH540) modified nano-SiO2 (NS-NH2) via methylation. The chemical structure and performances of the NS-NR2 were characterized through a series of experiments, which revealed that NS-NR2 can react with CO2 in water and nanofluid with low viscosity revealed better CO2 capture. The CO2 capture mechanism of NS-NR2 was studied by kinetic models. From the correlation coefficient, the pseudo second order model was found to fit well with the experiment data. The influencing factors were investigated, including temperature, dispersants, and cycling numbers. Results has shown the additional surfactant to greatly promote the CO2 adsorption performance of NS-NR2 because of the better dispersity of nanoparticles. This work proved that NS-NR2 yields low viscosity, high capacity for CO2 capture, and good regenerability in water. NS-NR2 with high CO2 capture will play a role in storing CO2 to enhanced oil recovery in CO2 flooding.

7.
Polymers (Basel) ; 11(9)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514371

RESUMO

To improve oil recovery significantly in low-mid permeability reservoirs, a novel modified nano-SiO2 hyperbranched copolymer (HPBS), consisting of polyacrylamide as hydrophilic branched chains and modified nano-SiO2 as the core, was synthesized via an in situ free radical polymerization reaction. The structure and properties of the hyperbranched copolymer were characterized through a range of experiments, which showed that HBPS copolymers have better stability and enhanced oil recovery (EOR) capacity and also smaller hydrodynamic radius in comparison with hydrolyzed polyacrylamide (HPAM). The flooding experiments indicated that when a 1000 mg/L HPBS solution was injected, the resistance factor (RF) and residual resistance factor (RRF) increased after the injection. Following a 98% water cut after preliminary water flooding, 0.3 pore volume (PV) and 1000 mg/L HPBS solution flooding and extended water flooding (EWF) can further increase the oil recovery by 18.74% in comparison with 8.12% oil recovery when using HPAM. In this study, one can recognize that polymer flooding would be applicable in low-mid permeability reservoirs.

8.
J Mol Model ; 25(7): 180, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31175445

RESUMO

The effect of different generalized gradient approximation (GGA) functionals (BLYP, PW91, PBE, and RPBE) on the oxygen reduction reaction (ORR) catalyzed by Pt(111) and FeN4 doped graphene was investigated. The results indicate that all of the screened GGA functionals are accurate enough to calculate the property of isolated ORR species. However, the calculated results of the ORR on the catalyst surface are greatly affected by the choice of functional. For Pt(111) catalyst, PW91 and PBE proved to be better functionals to investigate ORR on its surface, while for FeN4-doped graphene, BLYP was demonstrated to be the most suitable functional to study the electrocatalytic ORR properties, based on analyzing the adsorption of ORR species, reaction energies of ORR steps, and the adsorption structure of the O2 molecule. Graphical abstract Effects of generalized gradient approximation (GGA) functionals on oxygen reduction reactions (ORR).

9.
Carbohydr Polym ; 96(1): 47-56, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23688453

RESUMO

Mono-6-(allyl amino)-ß-cyclodextrin (N-ß-CD) and mono-2-O-(allyl oxygen radicals-2-hydroxyl propyl)-ß-cyclodextrin (O-ß-CD) were copolymerized with acrylamide (AM), acrylic acid (AA), and 1-llyl-3-oil acyloxyimidazole-1-ammonion bramide (AOAB) initiated by redox initiation system in an aqueous medium. The AM/AA/AOAB/N-ß-CD and AM/AA/AOAB/O-ß-CD were prepared by adjusting the reactive conditions, such as initiator concentration, pH, temperature, and monomer ratios. The obtained copolymers were characterized by means of infrared (IR) spectroscopy, (1)H NMR spectroscopy, scanning electron microscope (SEM), rotational rheometer, intrinsic viscosity, salt resistance, core flood test, etc. The temperature-tolerance, shear-tolerance, salt-resistance and thickening function of these copolymers are improved remarkably compared with partially hydrolyzed polyacrylamide (HPAM). About 18.3% and 12.5% oil recovery could be enhanced by 2000mg/L AM/AA/AOAB/N-ß-CD and AM/AA/AOAB/O-ß-CD comparing with water-flooding. In addition, the result of X-ray diffractometry (XRD) test showed that the solutions of obtained copolymers could remarkably reduce the crystalline interspace of sodium montmorillonite (from 18.9Å to 15.3Å).


Assuntos
Acrilamida/química , beta-Ciclodextrinas/química , Petróleo , Solubilidade , Temperatura , Viscosidade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...