Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4556, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811549

RESUMO

The universal flexoelectric effect in solids provides a mechanical pathway for controlling electric polarization in ultrathin ferroelectrics, eliminating potential material breakdown from a giant electric field at the nanoscale. One challenge of this approach is arbitrary implementation, which is strongly hindered by one-way switching capability. Here, utilizing the innate flexibility of van der Waals materials, we demonstrate that ferroelectric polarization and domain structures can be mechanically, reversibly, and arbitrarily switched in two-dimensional CuInP2S6 via the nano-tip imprinting technique. The bidirectional flexoelectric control is attributed to the extended tip-induced deformation in two-dimensional systems with innate flexibility at the atomic scale. By employing an elastic substrate, artificial ferroelectric nanodomains with lateral sizes as small as ~80 nm are noninvasively generated in an area of 1 µm2, equal to a density of 31.4 Gbit/in2. Our results highlight the potential applications of van der Waals ferroelectrics in data storage and flexoelectronics.

2.
Nano Lett ; 22(8): 3275-3282, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35412313

RESUMO

Room-temperature ferroelectricity in two-dimensional (2D) materials is a potential for developing atomic-scale functional devices. However, as a key step for the technology implementations of 2D ferroelectrics in electronics, the controllable generation of uniform domains remains challenging at the current stage because domain engineering through an external electric field at the 2D limit inevitably leads to large leakage currents and material breakdown. Here, we demonstrate a voltage-free method, the flexoelectric effect, to artificially generate large-scale stripe domains in 2D ferroelectric CuInP2S6 with single domain lateral size at the scale of several hundred microns. With giant strain gradients (∼106 m-1), we mechanically switch the out-of-plane polarization in ultrathin CuInP2S6. The flexoelectric control of polarization is understood with a distorted Landau-Ginzburg-Devonshire double well model. Through substrate strain engineering, the stripe domain density is controllable. Our results highlight the potential of developing van der Waals ferroelectrics-based flexible electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA