Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Infect Dis ; 135: 132-135, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37619662

RESUMO

OBJECTIVES: This paper presented a detailed analysis of the epidemiology and molecular characteristics of staphylococcal food poisoning (SFP) that occurred in a hotel in Hangzhou. METHODS: A total of 46 guests at the hotel underwent an epidemiological survey. Samples of stool from patients, vomit, swabs from the kitchen, leftover food items, and anal swabs from food handlers were taken and investigated for the presence of potential pathogenic bacteria. Molecular techniques and whole genome sequencing were performed to track the evolution of Staphylococcus aureus associated with the outbreak of SFP. RESULTS: Forty-six individuals displayed gastrointestinal symptoms. Seventeen isolates of S. aureus were discovered to carry the seg, sei, sem, sen, seo, and selu genes found in a specific enterotoxin gene cluster (egc) operon, but without the presence of classical enterotoxins such as SEA ∼ SEE. All egc-positive isolates shared identical pulsed-field gel electrophoresis profiles and were classified under new ST7591 (Clonal Complex 72) with identical spa typing t148. In addition, some isolates of S. aureus obtained from food sources sold in Hangzhou over the past 3 years and carrying egc genes were grouped under the ST72 lineage (CC72). Through whole genome sequencing, a strong genetic connection was revealed between these egc-positive isolates and clinical ST72 S. aureus found in China. CONCLUSIONS: S. aureus with non-classical egc enterotoxins was suggested to be a potential cause of SFP in humans.


Assuntos
Intoxicação Alimentar Estafilocócica , Infecções Estafilocócicas , Humanos , Enterotoxinas/genética , Staphylococcus aureus/genética , Infecções Estafilocócicas/epidemiologia , Intoxicação Alimentar Estafilocócica/epidemiologia , Intoxicação Alimentar Estafilocócica/genética , Intoxicação Alimentar Estafilocócica/microbiologia , Família Multigênica , Surtos de Doenças , Microbiologia de Alimentos
2.
Small ; 13(14)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28151574

RESUMO

Contamination of industrial sewage by organic dye pollutants is one of the most common challenges to the daily life. De-contamination can be achieved by adsorption and photodegradation of the pollutants. However, the former technique is generally limited by the poor loading capacity of the adsorbent and/or the difficulty in its regeneration for reuse, while the latter often suffers from sluggish reaction kinetics and thus requires long reaction time and powerful light source to be successful. Herein, a solution to these challenges by creating nanocomposites featuring porous diamine-functionalized graphene oxide (FGO) impregnated with photocatalytically active polyoxometalates (POMs) is presented. Cross-linking of GO via diamination not only generates porous structures with positively charged interior that attracts and stabilizes the anionic POM guests, but also modulates the GO bandgap. The introduction of POMs improves loading capacity of FGO for cationic dyes and promotes effective separation of electron-hole pair by trapping and transferring photogenerated electron. Thus, the two components act in synergy to result in much improved adsorption of certain common organic dyes as well as enhanced oxidative degradation by both the GO host and the POMs that lead to complete regeneration of the adsorbents without compromising their performance in multiple rounds of reuse.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA