Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1264: 341307, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37230717

RESUMO

Informative dissociation of carbohydrates using an infrared (IR) irradiation system is demonstrated under ambient conditions without the instrumentation of a mass spectrometer. Structural identification of carbohydrates and associated conjugates is essential for understanding their biological functions, but identification remains challenging. Herein, an easy and rugged method is reported for the structural identification of model carbohydrates, including Globo-H, three trisaccharide isomers (nigerotriose/laminaritriose/cellotriose), and two hexasaccharide isomers (laminarihexaose/isomaltohexaose). For Globo-H, the numbers of cross-ring cleavages increased by factors of 4.4 and 3.4 upon ambient IR exposure, compared to an untreated control and a collision-induced dissociation (CID) sample. Moreover, 25-82% enhancement in the numbers of glycosidic bond cleavages upon ambient IR exposure was also obtained compared to untreated and CID samples. Unique features of first-generation fragments produced by ambient IR facilitated the differentiation of three trisaccharide isomers. Semi-quantitative analysis was achieved (coefficient of determination (R2) of 0.982) in a mixture of two hexasaccharide isomers via unique features generated upon ambient IR. Photothermal and radical migration effects induced by ambient IR were postulated as responsible for promoting carbohydrate fragmentation. This easy and rugged method could be a universally applicable protocol and complementary to other techniques for detailed structural characterization of carbohydrates.


Assuntos
Carboidratos , Trissacarídeos , Carboidratos/química , Espectrometria de Massas/métodos
2.
Mass Spectrom Rev ; 42(6): 2426-2445, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35686331

RESUMO

A major challenge in modern mass spectrometry (MS) is achieving high mass resolving power and accuracy for precision analyses in high mass-to-charge (m/z) regions. To advance the capability of MS for increasingly demanding applications, understanding limitations of state-of-the-art techniques and their status in applied sciences is essential. This review summarizes important instruments in high-resolution mass spectrometry (HRMS) and related advances to extend their working range to high m/z regions. It starts with an overview of HRMS techniques that provide adequate performance for macromolecular analysis, including Fourier-transform, time-of-flight (TOF), quadrupole-TOF, and related data-processing techniques. Methodologies and applications of HRMS for characterizing macromolecules in biochemistry and material sciences are summarized, such as top-down proteomics, native MS, drug discovery, structural virology, and polymer analyses.

3.
Anal Chem ; 94(14): 5651-5657, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35343676

RESUMO

We tested a paper-based platform ("Aptapaper") for the upconcentration and analysis of small molecules from complex matrices for two well-characterized aptamers, quinine and serotonin binding aptamers (QBA and SBA, respectively). After incubating the aptapaper under conditions that ensure correct aptamer folding, the aptapaper was used to upconcentrate target analytes from complex matrices. Aptapaper was rinsed, dried, and the target analyte was detected immediately or up to 4 days later by paper spray ionization coupled to high-resolution mass spectrometry (PS-MS). The minimum concentrations detectable were 81 pg/mL and 1.8 ng/mL for quinine and serotonin, respectively, from 100 mM AmAc or water. Complementary characterization of the QBA aptapaper system was performed using an orthogonal fluorescence microscopy method. Random adsorption was analyte-specific and observed for quinine, but not serotonin. This aptapaper approach is a semiquantitative (10-20% RSD) platform for upconcentration of small metabolites by mass spectrometry.


Assuntos
Aptâmeros de Nucleotídeos , Aptâmeros de Nucleotídeos/química , Vidro , Espectrometria de Massas/métodos , Quinina , Serotonina
4.
Nanomaterials (Basel) ; 11(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34835646

RESUMO

A simple, efficient, and cost-effective extended graphite as a supporting platform further supported the MnO2 growth for the construction of hierarchical flower-like MnO2/extended graphite. MnO2/extended graphite exhibited an increase in sp2 carbon bonds in comparison with that of extended graphite. It can be expected to display better electrical conductivity and further promote electron/ion transport kinetics for boosting the electrochemical performance in supercapacitors and glucose sensing. In supercapacitors, MnO2/extended graphite delivered an areal capacitance value of 20.4 mF cm-2 at 0.25 mA cm-2 current densities and great cycling stability (capacitance retention of 83% after 1000 cycles). In glucose sensing, MnO2/extended graphite exhibited a good linear relationship in glucose concentration up to about 5 mM, sensitivity of 43 µA mM-1cm-2, and the limit of detection of 0.081 mM. It is further concluded that MnO2/extended graphite could be a good candidate for the future design of synergistic multifunctional materials in electrochemical techniques.

5.
Anal Chem ; 92(19): 12763-12768, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32897048

RESUMO

A dynamic data correction method embedded in the process of data acquisition improves spectral quality. The method minimizes the impact of random errors in spectroscopic measurements by correcting peak positions in every single-scan spectrum. The method is fast enough to facilitate online data correction. The integration of corrected spectra improves resolving power and signal-to-noise ratio. The correction method can apply to most analytical spectra. In mass spectrometry and Raman spectroscopy, observations show that it improved the average resolving power by roughly 40-150% and revealed unresolved spectral features.

6.
Chem Sci ; 9(23): 5207-5211, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29997875

RESUMO

Single liquid-phase and liquid-liquid phase reactions in microdroplets have shown much faster kinetics than that in the bulk phase. This work extends the scope of microdroplet reactions to gas-liquid reactions and achieves preparative synthesis. We report highly efficient aerobic oxidation of aldehydes to carboxylic acids in microdroplets. Molecular oxygen plays two roles: (1) as the sheath gas to shear the aldehyde solution into microdroplets, and (2) as the sole oxidant. The dramatic increase of the surface-area-to-volume ratio of microdroplets compared to bulk solution, and the efficient mixing of gas and liquid phases using spray nozzles allow effective mass transfer between aldehydes and molecular oxygen. The addition of catalytic nickel(ii) acetate is shown to accelerate further microdroplet reactions of this kind. We show that aliphatic, aromatic, and heterocyclic aldehydes can be oxidized to the corresponding carboxylic acids in a mixture of water and ethanol using the nickel(ii) acetate catalyst, in moderate to excellent yields (62-91%). The microdroplet synthesis is scaled up to make it preparative. For example, aerobic oxidation of 4-tert-butylbenzaldehyde to 4-tert-butylbenzoic acid was achieved at a rate of 10.5 mg min-1 with an isolated product yield of 66%.

7.
J Phys Chem Lett ; 9(11): 2928-2932, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29763551

RESUMO

Chemical reactions can be greatly accelerated in microdroplets, but the factors that lead to acceleration are still being elucidated. Using rhodamine 6G (R6G) as a model compound, we studied the density distribution and fluorescence polarization anisotropy of this dye in water-in-oil microdroplets. We found the density of R6G is higher on the surface of the microdroplets, and the ratio of the surface density to that of the center grows with increasing microdroplet radius or with decreasing R6G concentration. The measured fluorescence polarization anisotropy at the surface is almost the same for droplets of different sizes but becomes larger when the concentration is lowered. We also performed three-dimensional simulations by treating R6G+ and its associated anion as a dipole of fixed length and magnitude. The simulation results match quite well the experimental measurements, showing that the density distribution and fluorescence polarization anisotropy can be largely explained by a simple electrostatic model.

8.
J Org Chem ; 83(10): 5681-5687, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29683651

RESUMO

The mechanism of the Ritter-type C-H amination reaction of menthol with acetonitrile using CuBr2, Selectfluor, and Zn(OTf)2, first disclosed by Baran and coworkers in 2012, was studied using a combination of online electrospray ionization mass spectrometry, continuous UV/vis spectrometric monitoring, and density functional theory calculations. In addition to corroborating Baran's original mechanistic proposal, these studies uncovered a second pathway to product formation, which likely only occurs in microdroplets. DFT calculations show that neither pathway has a barrier that is greater than 6.8 kcal/mol, suggesting that both mechanisms are potentially operative under ambient conditions.

9.
J Am Soc Mass Spectrom ; 29(5): 1036-1043, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29569167

RESUMO

The nucleophilic opening of an epoxide is a classic organic reaction that has widespread utility in both academic and industrial applications. We have studied the reaction of limonene oxide with morpholine to form 1-methyl-2-morpholino-4-(prop-1-en-2-yl) cyclohexan-1-ol in bulk solution and in electrosprayed microdroplets with a 1:1 v/v water/methanol solvent system. We find that even after 90 min at room temperature, there is no product detected by nuclear magnetic resonance spectroscopy in bulk solution whereas in room-temperature microdroplets (2-3 µm in diameter), the yield is already 0.5% in a flight time of 1 ms as observed by mass spectrometry. This constitutes a rate acceleration of ~ 105 in the microdroplet environment, if we assume that as much as 5% of product is formed in bulk after 90 min of reaction time. We examine how the reaction rate depends on droplet size, solvent composition, sheath gas pressure, and applied voltage. These factors profoundly influence the extent of reaction. This dramatic acceleration is not limited to just one system. We have also found that the nucleophilic opening of cis-stilbene oxide by morpholine is similarly accelerated. Such large acceleration factors in reaction rates suggest the use of microdroplets for ring opening of epoxides in other systems, which may have practical significance if such a procedure could be scaled. Graphical Abstract This graphical image is distorted.  It is too extended in the vertical direction.  Please fix.ᅟ.

10.
Anal Chim Acta ; 994: 49-55, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29126468

RESUMO

Carbohydrate analysis is challenging due to lack of sensitive detection and efficient separation methods. Although matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is a sensitive tool, the low ionization efficiency of carbohydrates makes mass analyses inefficient. This work systematically examines the correlation between MALDI-MS sensitivity and carbohydrate sample morphology. Depending on the properties of the matrix used, the morphology changes through sample recrystallization after drying or imposition of hydrodynamic flows during droplet drying. Observation shows that amorphous solids and finer crystals offer higher carbohydrate sensitivity and spatial homogeneity than larger crystals. Clear evidences of an inverse correlation between sensitivity and crystal size are obtained when various kinds of carbohydrates are mixed with different matrixes. Similar experiments on proteins and peptides showed a negative or negligible effect. The result serves as a general guideline for improving efficiency in routine carbohydrate analysis.

11.
Mass Spectrom (Tokyo) ; 6(Spec Iss 2): S0072, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28959517

RESUMO

Although matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is one of the most widely used soft ionization methods for biomolecules, the lack of detailed understanding of ionization mechanisms restricts its application in the analysis of carbohydrates. Structural identification of carbohydrates achieved by MALDI mass spectrometry helps us to gain insights into biological functions and pathogenesis of disease. In this review, we highlight mechanistic details of MALDI, including both ionization and desorption. Strategies to improve the ion yield of carbohydrates are also reviewed. Furthermore, commonly used fragmentation methods to identify the structure are discussed.

12.
J Am Chem Soc ; 139(20): 6851-6854, 2017 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28481522

RESUMO

The rate of hydrogen-deuterium exchange (HDX) in aqueous droplets of phenethylamine has been determined with submillisecond temporal resolution by mass spectrometry using nanoelectrospray ionization with a theta-capillary. The average speed of the microdroplets is measured using microparticle image velocimetry. The droplet travel time is varied from 20 to 320 µs by changing the distance between the emitter and the heated inlet to the mass spectrometer and the voltage applied to the emitter source. The droplets were found to accelerate by ∼30% during their observable travel time. Our droplet imaging shows that the theta-capillary produces two Taylor cone-jets (one per channel), causing mixing to take place from droplet fusion in the Taylor spray zone. Phenethylamine (ϕCH2CH2NH2) was chosen to study because it has only one functional group (-NH2) that undergoes rapid HDX. We model the HDX with a system of ordinary differential equations. The rate constant for the formation of -NH2D+ from -NH3+ is 3660 ± 290 s-1, and the rate constant for the formation of -NHD2+ from -NH2D+ is 3330 ± 270 s-1. The observed rates are about 3 times faster than what has been reported for rapidly exchangeable peptide side-chain groups in bulk measurements using stopped-flow kinetics and NMR spectroscopy. We also applied this technique to determine the HDX rates for a small 10-residue peptide, angiotensin I, in aqueous droplets, from which we found a 7-fold acceleration of HDX in the droplet compared to that in bulk solution.


Assuntos
Medição da Troca de Deutério , Fenetilaminas/análise , Água/química , Nanotecnologia , Tamanho da Partícula , Espectrometria de Massas por Ionização por Electrospray
13.
J Vis Exp ; (116)2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27842361

RESUMO

This protocol demonstrates a simple sample preparation to reduce spatial heterogeneity in ion signals during matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The heterogeneity of ion signals is a severe problem in MALDI, which results in poor data reproducibility and makes MALDI unsuitable for quantitative analysis. By regulating sample plate temperature during sample preparation, thermal-induced hydrodynamic flows inside droplets of sample solution are able to reduce the heterogeneity problem. A room-temperature sample preparation chamber equipped with a temperature-regulated copper base block that holds MALDI sample plates facilitates precise control of the sample drying condition. After drying of sample droplets, the temperature of sample plates is returned to room temperature and removed from the chamber for subsequent mass spectrometric analysis. The areas of samples are examined with MALDI-imaging mass spectrometry to obtain the spatial distribution of all components in the sample. In comparison with the conventional dried-droplet method that prepares samples under ambient conditions without temperature control, the samples prepared with the method demonstrated herein show significantly better spatial distribution and signal intensity. According to observations using carbohydrate and peptide samples, decreasing substrate temperature while maintaining the surroundings at ambient temperature during the drying process can effectively reduce the heterogeneity of ion signals. This method is generally applicable to various combinations of samples and matrices.


Assuntos
Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Carboidratos , Peptídeos , Reprodutibilidade dos Testes
14.
Analyst ; 141(21): 6093-6103, 2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27722232

RESUMO

Glycoconjugates are ubiquitously present and play a critical role in various biological processes. Due to their low stability and incredibly high degree of structural diversity, the structural characterization of glycan generally requires chemical derivatization and sophisticated instrumentation. Herein, we report a method for complicated glycan characterization in a single assay by employing 2,5-dihydroxybenzoic acid functionalized mercury telluride nanoparticles (HgTe@DHB NPs) as a dual ionization-dissociation element in matrix-assisted laser desorption/ionization mass spectrometry. Using a linear glycan, HgTe@DHB NPs promote laser-induced extensive and intense dissociation of the glycan, superior to HgTe microparticles and other inorganic nanoparticles (TiO2, ZnO, and Mn2O3 NPs). Abundant generation of diagnostic glycosidic (Y-, and B-type ions) and cross-ring cleavage (A-type ions) ions permits unambiguous determination of the composition, sequence, branching, and linkage of labile sialylated glycans. The general utility of this approach was demonstrated by the characterization of labile sialylated glycans and two sets of complicated isomeric glycans. This phenomenon was delineated further by investigating the NP's physico-chemical characteristics, revealing that their nanoscale-dependent thermodynamic properties, including UV absorption, photoelectron release dynamics and thermal energy, were the key to levitate temperature synergistically, thus inducing spontaneous glycan decomposition during the nanoparticle-assisted laser desorption-ionization process. Our results show that this "pseudo-MS/MS" obtained by HgTe@DHB can be beneficial for the analysis of biologically relevant and more complicated carbohydrates, without the need for chemical pre-derivatization and conventional tandem mass spectrometry.


Assuntos
Compostos de Mercúrio , Nanopartículas Metálicas , Polissacarídeos/análise , Telúrio , Lasers , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
15.
Philos Trans A Math Phys Eng Sci ; 374(2079)2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27644968

RESUMO

Quantitative analysis with mass spectrometry (MS) is important but challenging. Matrix-assisted laser desorption/ionization (MALDI) coupled with time-of-flight (TOF) MS offers superior sensitivity, resolution and speed, but such techniques have numerous disadvantages that hinder quantitative analyses. This review summarizes essential obstacles to analyte quantification with MALDI-TOF MS, including the complex ionization mechanism of MALDI, sensitive characteristics of the applied electric fields and the mass-dependent detection efficiency of ion detectors. General quantitative ionization and desorption interpretations of ion production are described. Important instrument parameters and available methods of MALDI-TOF MS used for quantitative analysis are also reviewed.This article is part of the themed issue 'Quantitative mass spectrometry'.

16.
J Am Soc Mass Spectrom ; 27(8): 1314-21, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27126469

RESUMO

This work demonstrates a method to prepare homogeneous distributions of analytes to improve data reproducibility in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS). Natural-air drying processes normally result in unwanted heterogeneous spatial distributions of analytes in MALDI crystals and make quantitative analysis difficult. This study demonstrates that inducing Marangoni flows within drying droplets can significantly reduce the heterogeneity problem. The Marangoni flows are accelerated by changing substrate temperatures to create temperature gradients across droplets. Such hydrodynamic flows are analyzed semi-empirically. Using imaging mass spectrometry, changes of heterogeneity of molecules with the change of substrate temperature during drying processes are demonstrated. The observed heterogeneities of the biomolecules reduce as predicted Marangoni velocities increase. In comparison to conventional methods, drying droplets on a 5 °C substrate while keeping the surroundings at ambient conditions typically reduces the heterogeneity of biomolecular ions by 65%-80%. The observation suggests that decreasing substrate temperature during droplet drying processes is a simple and effective means to reduce analyte heterogeneity for quantitative applications. Graphical Abstract ᅟ.

17.
J Am Soc Mass Spectrom ; 26(10): 1722-31, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26154940

RESUMO

A comprehensive theoretical calculation that couples space- and velocity-focusing is developed for optimizing the design of a time-of-flight (TOF) mass spectrometer. Conventional designs for ion sources of TOF mass spectrometers deviate from the optimal condition because the velocity- and space-focusing conditions are considered separately for two ions with simplified equations. The result of a reexamination taking into account all essential ions reveals that the conventional ion source design, especially the length of the ion extraction region, results in poor resolving power. The comprehensive calculation demonstrates that the resolving power increases when the length of the extraction region is shorter than that of the conventional ion source. A numerical analysis indicates that the resolving power dramatically increases when the effective extraction potential compensates for the initial kinetic energy spread of ions. With typically used extraction potentials, the newly optimized ion source improves the resolving power by more than two orders of magnitude compared with the conventional design. This new theoretical interpretation can also be used to predict the optimal extraction potential and extraction delay in conventional ion sources to substantially improve the resolving power. This comprehensive calculation method is effective not only for designing new high-resolution instruments but also for optimizing commercial products.


Assuntos
Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Íons/química , Cinética , Peso Molecular , Temperatura
18.
Rapid Commun Mass Spectrom ; 28(15): 1716-22, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24975252

RESUMO

RATIONALE: Although several reaction models have been proposed in the literature to explain matrix-assisted laser desorption/ionization (MALDI), further study is still necessary to explore the important ionization pathways that occur under the high-temperature environment of MALDI. 2,4,6-Trihydroxyacetophenone (THAP) is an ideal compound for evaluating the contribution of thermal energy to an initial reaction with minimum side reactions. METHODS: Desorbed neutral THAP and ions were measured using a crossed-molecular beam machine and commercial MALDI-TOF instrument, respectively. A quantitative model incorporating an Arrhenius-type desorption rate derived from transition state theory was proposed. Reaction enthalpy was calculated using GAUSSIAN 03 software with dielectric effect. Additional evidence of thermal-induced proton disproportionation was given by the indirect ionization of THAP embedded in excess fullerene molecules excited by a 450 nm laser. RESULTS: The quantitative model predicted that proton disproportionation of THAP would be achieved by thermal energy converted from a commonly used single UV laser photon. The dielectric effect reduced the reaction Gibbs free energy considerably even when the dielectric constant was reduced under high-temperature MALDI conditions. With minimum fitting parameters, observations of pure THAP and THAP mixed with fullerene both agreed with predictions. CONCLUSIONS: Proton disproportionation of solid THAP was energetically favorable with a single UV laser photon. The quantitative model revealed an important initial ionization pathway induced by the abrupt heating of matrix crystals. In the matrix crystals, the dielectric effect reduced reaction Gibbs free energy under typical MALDI conditions. The result suggested that thermal energy plays an important role in the initial ionization reaction of THAP.


Assuntos
Acetofenonas/química , Transferência de Energia , Temperatura Alta , Íons/síntese química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Acetofenonas/análise , Íons/análise , Temperatura
19.
J Am Soc Mass Spectrom ; 25(3): 310-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24395022

RESUMO

One of the reasons that thermally induced reactions are not considered a crucial mechanism in ultraviolet matrix-assisted laser desorption ionization (UV-MALDI) is the low ion-to-neutral ratios. Large ion-to-neutral ratios (10(-4)) have been used to justify the unimportance of thermally induced reactions in UV-MALDI. Recent experimental measurements have shown that the upper limit of the total ion-to-neutral ratio is approximately 10(-7) at a high laser fluence and less than 10(-7) at a low laser fluence. Therefore, reexamining the possible contributions of thermally induced reactions in MALDI may be worthwhile. In this study, the concept of polar fluid was employed to explain the generation of primary ions in MALDI. A simple model, namely thermal proton transfer, was used to estimate the ion-to-neutral ratios in MALDI. We demonstrated that the theoretical calculations of ion-to-neutral ratios exhibit the same trend and similar orders of magnitude compared with those of experimental measurements. Although thermal proton transfer may not generate all of the ions observed in MALDI, the calculations demonstrated that thermally induced reactions play a crucial role in UV-MALDI.


Assuntos
Prótons , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrofotometria Ultravioleta/métodos , Termodinâmica
20.
Anal Chem ; 85(8): 3836-41, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23496007

RESUMO

Diamond nanoparticles (DNPs) were incorporated into matrix-assisted laser desorption/ionization (MALDI) samples to enhance the sensitivity of the mass spectrometer to carbohydrates. The DNPs optimize the MALDI sample morphology and thermalize the samples for thermally labile compounds because they have a high thermal conductivity, a low extinction coefficient in UV-vis spectral range, and stable chemical properties. The best enhancement effect was achieved when matrix, DNP, and carbohydrate solutions were deposited and vacuum-dried consecutively to form a trilayer sample morphology. It allows the direct identification of underivatized carbohydrates mixed with equal amount of proteins because no increase in the ion abundance of proteins was achieved. For dextran with an average molecular weight of 1500, the trilayer method typically improves the sensitivity by 79- and 7-fold in comparison to the conventional dried-droplet and thin-layer methods, respectively.


Assuntos
Dextranos/análise , Diamante/química , Nanopartículas/química , Proteínas/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Temperatura Alta , Íons , Razão Sinal-Ruído , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...