Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 283
Filtrar
1.
Chaos ; 34(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38717410

RESUMO

A problem in nonlinear and complex dynamical systems with broad applications is forecasting the occurrence of a critical transition based solely on data without knowledge about the system equations. When such a transition leads to system collapse, as often is the case, all the available data are from the pre-critical regime where the system still functions normally, making the prediction problem challenging. In recent years, a machine-learning based approach tailored to solving this difficult prediction problem, adaptable reservoir computing, has been articulated. This Perspective introduces the basics of this machine-learning scheme and describes representative results. The general setting is that the system dynamics live on a normal attractor with oscillatory dynamics at the present time and, as a bifurcation parameter changes into the future, a critical transition can occur after which the system switches to a completely different attractor, signifying system collapse. To predict a critical transition, it is essential that the reservoir computer not only learns the dynamical "climate" of the system of interest at some specific parameter value but, more importantly, discovers how the system dynamics changes with the bifurcation parameter. It is demonstrated that this capability can be endowed into the machine through a training process with time series from a small number of distinct, pre-critical parameter values, thereby enabling accurate and reliable prediction of the catastrophic critical transition. Three applications are presented: predicting crisis, forecasting amplitude death, and creating digital twins of nonlinear dynamical systems. Limitations and future perspectives are discussed.

2.
Phys Rev Lett ; 132(13): 137201, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38613259

RESUMO

Identifying hidden states in nonlinear physical systems that evade direct experimental detection is important as disturbances and noises can place the system in a hidden state with detrimental consequences. We study a cavity magnonic system whose main physics is photon and magnon Kerr effects. Sweeping a bifurcation parameter in numerical experiments (as would be done in actual experiments) leads to a hysteresis loop with two distinct stable steady states, but analytic calculation gives a third folded steady state "hidden" in the loop, which gives rise to the phenomenon of hidden multistability. We propose an experimentally feasible control method to drive the system into the folded hidden state. We demonstrate, through a ternary cavity magnonic system and a gene regulatory network, that such hidden multistability is in fact quite common. Our findings shed light on hidden dynamical states in nonlinear physical systems which are not directly observable but can present challenges and opportunities in applications.

3.
Chaos ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38574280

RESUMO

Reconstructing complex networks and predicting the dynamics are particularly challenging in real-world applications because the available information and data are incomplete. We develop a unified collaborative deep-learning framework consisting of three modules: network inference, state estimation, and dynamical learning. The complete network structure is first inferred and the states of the unobserved nodes are estimated, based on which the dynamical learning module is activated to determine the dynamical evolution rules. An alternating parameter updating strategy is deployed to improve the inference and prediction accuracy. Our framework outperforms baseline methods for synthetic and empirical networks hosting a variety of dynamical processes. A reciprocity emerges between network inference and dynamical prediction: better inference of network structure improves the accuracy of dynamical prediction, and vice versa. We demonstrate the superior performance of our framework on an influenza dataset consisting of 37 US States and a PM2.5 dataset covering 184 cities in China.

4.
Proc Natl Acad Sci U S A ; 120(51): e2308820120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38091288

RESUMO

In an ecosystem, environmental changes as a result of natural and human processes can cause some key parameters of the system to change with time. Depending on how fast such a parameter changes, a tipping point can occur. Existing works on rate-induced tipping, or R-tipping, offered a theoretical way to study this phenomenon but from a local dynamical point of view, revealing, e.g., the existence of a critical rate for some specific initial condition above which a tipping point will occur. As ecosystems are subject to constant disturbances and can drift away from their equilibrium point, it is necessary to study R-tipping from a global perspective in terms of the initial conditions in the entire relevant phase space region. In particular, we introduce the notion of the probability of R-tipping defined for initial conditions taken from the whole relevant phase space. Using a number of real-world, complex mutualistic networks as a paradigm, we find a scaling law between this probability and the rate of parameter change and provide a geometric theory to explain the law. The real-world implication is that even a slow parameter change can lead to a system collapse with catastrophic consequences. In fact, to mitigate the environmental changes by merely slowing down the parameter drift may not always be effective: Only when the rate of parameter change is reduced to practically zero would the tipping be avoided. Our global dynamics approach offers a more complete and physically meaningful way to understand the important phenomenon of R-tipping.

5.
Phys Rev E ; 108(3-1): 034304, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37849195

RESUMO

The challenging problem of network reconstruction from dynamical data can in general be formulated as an optimization task of solving multiple linear equations. Existing approaches are of the two types: Point-by-point (PBP) and global methods. The local PBP method is computationally efficient, but the accuracies of its solutions are somehow low, while a global method has the opposite traits: High accuracy and high computational cost. Taking advantage of the network symmetry, we develop a novel framework integrating the advantages of both the PBP and global methods while avoiding their shortcomings: i.e., high reconstruction accuracy is guaranteed, but the computational cost is orders of magnitude lower than that of the global methods in the literature. The mathematical principle underlying our framework is block coordinate descent (BCD) for solving optimization problems, where the various blocks are determined by the network symmetry. The reconstruction framework is validated by numerical examples with a variety of network structures (i.e., sparse and dense networks) and dynamical processes. Our success is a demonstration that the general principle of exploiting symmetry can be extended to tackling the challenging inverse problem or reverse engineering of complex networks. Since solving a large number of linear equations is key to a plethora of problems in science and engineering, our BCD-based network reconstruction framework will find broader applications.

6.
Nat Commun ; 14(1): 5698, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37709780

RESUMO

Nonlinear tracking control enabling a dynamical system to track a desired trajectory is fundamental to robotics, serving a wide range of civil and defense applications. In control engineering, designing tracking control requires complete knowledge of the system model and equations. We develop a model-free, machine-learning framework to control a two-arm robotic manipulator using only partially observed states, where the controller is realized by reservoir computing. Stochastic input is exploited for training, which consists of the observed partial state vector as the first and its immediate future as the second component so that the neural machine regards the latter as the future state of the former. In the testing (deployment) phase, the immediate-future component is replaced by the desired observational vector from the reference trajectory. We demonstrate the effectiveness of the control framework using a variety of periodic and chaotic signals, and establish its robustness against measurement noise, disturbances, and uncertainties.

7.
Chaos ; 33(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37276573

RESUMO

In the classic Kuramoto system of coupled two-dimensional rotators, chimera states characterized by the coexistence of synchronous and asynchronous groups of oscillators are long-lived because the average lifetime of these states increases exponentially with the system size. Recently, it was discovered that, when the rotators in the Kuramoto model are three-dimensional, the chimera states become short-lived in the sense that their lifetime scales with only the logarithm of the dimension-augmenting perturbation. We introduce transverse-stability analysis to understand the short-lived chimera states. In particular, on the unit sphere representing three-dimensional (3D) rotations, the long-lived chimera states in the classic Kuramoto system occur on the equator, to which latitudinal perturbations that make the rotations 3D are transverse. We demonstrate that the largest transverse Lyapunov exponent calculated with respect to these long-lived chimera states is typically positive, making them short-lived. The transverse-stability analysis turns the previous numerical scaling law of the transient lifetime into an exact formula: the "free" proportional constant in the original scaling law can now be precisely determined in terms of the largest transverse Lyapunov exponent. Our analysis reinforces the speculation that in physical systems, chimera states can be short-lived as they are vulnerable to any perturbations that have a component transverse to the invariant subspace in which they live.

8.
bioRxiv ; 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37333159

RESUMO

The successful integration of engineered gene circuits into host cells remains a significant challenge in synthetic biology due to circuit-host interactions, such as growth feedback, where the circuit influences cell growth and vice versa. Understanding the dynamics of circuit failures and identifying topologies resilient to growth feedback are crucial for both fundamental and applied research. Utilizing transcriptional regulation circuits with adaptation as a paradigm, we systematically study 435 distinct topological structures and uncover six categories of failures. Three dynamical mechanisms of circuit failures are identified: continuous deformation of the response curve, strengthened or induced oscillations, and sudden switching to coexisting attractors. Our extensive computations also uncover a scaling law between a circuit robustness measure and the strength of growth feedback. Despite the negative effects of growth feedback on the majority of circuit topologies, we identify a few circuits that maintain optimal performance as designed, a feature important for applications.

9.
Chaos ; 33(3): 033111, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37003826

RESUMO

We articulate the design imperatives for machine learning based digital twins for nonlinear dynamical systems, which can be used to monitor the "health" of the system and anticipate future collapse. The fundamental requirement for digital twins of nonlinear dynamical systems is dynamical evolution: the digital twin must be able to evolve its dynamical state at the present time to the next time step without further state input-a requirement that reservoir computing naturally meets. We conduct extensive tests using prototypical systems from optics, ecology, and climate, where the respective specific examples are a chaotic CO2 laser system, a model of phytoplankton subject to seasonality, and the Lorenz-96 climate network. We demonstrate that, with a single or parallel reservoir computer, the digital twins are capable of a variety of challenging forecasting and monitoring tasks. Our digital twin has the following capabilities: (1) extrapolating the dynamics of the target system to predict how it may respond to a changing dynamical environment, e.g., a driving signal that it has never experienced before, (2) making continual forecasting and monitoring with sparse real-time updates under non-stationary external driving, (3) inferring hidden variables in the target system and accurately reproducing/predicting their dynamical evolution, (4) adapting to external driving of different waveform, and (5) extrapolating the global bifurcation behaviors to network systems of different sizes. These features make our digital twins appealing in applications, such as monitoring the health of critical systems and forecasting their potential collapse induced by environmental changes or perturbations. Such systems can be an infrastructure, an ecosystem, or a regional climate system.

10.
Chaos ; 32(9): 093132, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36182361

RESUMO

Symmetries, due to their fundamental importance to dynamical processes on networks, have attracted a great deal of current research. Finding all symmetric nodes in large complex networks typically relies on automorphism groups from algebraic-group theory, which are solvable in quasipolynomial time. We articulate a conceptually appealing and computationally extremely efficient approach to finding and characterizing all symmetric nodes by introducing a structural position vector (SPV) for each node in networks. We establish the mathematical result that symmetric nodes must have the same SPV value and demonstrate, using six representative complex networks from the real world, that all symmetric nodes in these networks can be found in linear time. Furthermore, the SPVs not only characterize the similarity of nodes but also quantify the nodal influences in propagation dynamics. A caveat is that the proved mathematical result relating the SPV values to nodal symmetries is not sufficient; i.e., nodes having the same SPV values may not be symmetric, which arises in regular networks or networks with a dominant regular component. We point out with an analysis that this caveat is, in fact, shared by the known existing approaches to finding symmetric nodes in the literature. We further argue, with the aid of a mathematical analysis, that our SPV method is generally effective for finding the symmetric nodes in real-world networks that typically do not have a dominant regular component. Our SPV-based framework, therefore, provides a physically intuitive and computationally efficient way to uncover, understand, and exploit symmetric structures in complex networks arising from real-world applications.

11.
Chaos ; 32(8): 083117, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36049930

RESUMO

Boolean networks introduced by Kauffman, originally intended as a prototypical model for gaining insights into gene regulatory dynamics, have become a paradigm for understanding a variety of complex systems described by binary state variables. However, there are situations, e.g., in biology, where a binary state description of the underlying dynamical system is inadequate. We propose random ternary networks and investigate the general dynamical properties associated with the ternary discretization of the variables. We find that the ternary dynamics can be either ordered or disordered with a positive Lyapunov exponent, and the boundary between them in the parameter space can be determined analytically. A dynamical event that is key to determining the boundary is the emergence of an additional fixed point for which we provide numerical verification. We also find that the nodes playing a pivotal role in shaping the system dynamics have characteristically distinct behaviors in different regions of the parameter space, and, remarkably, the boundary between these regions coincides with that separating the ordered and disordered dynamics. Overall, our framework of ternary networks significantly broadens the classical Boolean paradigm by enabling a quantitative description of richer and more complex dynamical behaviors.


Assuntos
Regulação da Expressão Gênica , Redes Reguladoras de Genes
12.
J R Soc Interface ; 19(194): 20220438, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36167085

RESUMO

A tipping point presents perhaps the single most significant threat to an ecological system as it can lead to abrupt species extinction on a massive scale. Climate changes leading to the species decay parameter drifts can drive various ecological systems towards a tipping point. We investigate the tipping-point dynamics in multi-layer ecological networks supported by mutualism. We unveil a natural mechanism by which the occurrence of tipping points can be delayed by multiplexity that broadly describes the diversity of the species abundances, the complexity of the interspecific relationships, and the topology of linkages in ecological networks. For a double-layer system of pollinators and plants, coupling between the network layers occurs when there is dispersal of pollinator species. Multiplexity emerges as the dispersing species establish their presence in the destination layer and have a simultaneous presence in both. We demonstrate that the new mutualistic links induced by the dispersing species with the residence species have fundamental benefits to the well-being of the ecosystem in delaying the tipping point and facilitating species recovery. Articulating and implementing control mechanisms to induce multiplexity can thus help sustain certain types of ecosystems that are in danger of extinction as the result of environmental changes.


Assuntos
Ecossistema , Simbiose , Mudança Climática , Plantas , Polinização
13.
J Environ Manage ; 322: 116001, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36030637

RESUMO

The quantification of cross-regional interactions for the atmospheric transport processes is of crucial importance to improve the predictive capacity of climatic and environmental system modeling. The dynamic interactions in these complex systems are often nonlinear and non-separable, making conventional approaches of causal inference, such as statistical correlation or Granger causality, infeasible or ineffective. In this study, we applied an advanced approach, based on the convergent cross mapping algorithm, to detect and quantify the causal influence among different climate regions in the contiguous U.S. in response to temperature perturbations using the long-term (1901-2018) climatology of near surface air temperature record. Our results show that the directed causal network constructed by convergent cross mapping algorithm, enables us to distinguish the causal links from spurious ones rendered by statistical correlation. We also find that the Ohio Valley region, as an atmospheric convergent zone, acts as the regional gateway and mediator to the long-term thermal environments in the U.S. In addition, the temporal evolution of dynamic causality of temperature exhibits superposition of periodicities at various time scales, highlighting the impact of prominent low frequency climate variabilities such as El Niño-Southern Oscillation. The proposed method in this work will help to promote novel system-based and data-driven framework in studying the integrated environmental system dynamics.


Assuntos
Algoritmos , Ohio , Temperatura , Estados Unidos
14.
Adv Genet (Hoboken) ; 3(1)2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35989723

RESUMO

Despite extensive investigation demonstrating that resource competition can significantly alter the deterministic behaviors of synthetic gene circuits, it remains unclear how resource competition contributes to the gene expression noise and how this noise can be controlled. Utilizing a two-gene circuit as a prototypical system, we uncover a surprising double-edged role of resource competition in gene expression noise: competition decreases noise through introducing a resource constraint but generates its own type of noise which we name as "resource competitive noise." Utilization of orthogonal resources enables retainment of the noise reduction conferred by resource constraint while removing the added resource competitive noise. The noise reduction effects are studied using three negative feedback types: negatively competitive regulation (NCR), local, and global controllers, each having four placement architectures in the protein biosynthesis pathway (mRNA or protein inhibition on transcription or translation). Our results show that both local and NCR controllers with mRNA-mediated inhibition are efficacious at reducing noise, with NCR controllers demonstrating a superior noise-reduction capability. We also find that combining feedback controllers with orthogonal resources can improve the local controllers. This work provides deep insights into the origin of stochasticity in gene circuits with resource competition and guidance for developing effective noise control strategies.

15.
Nat Commun ; 13(1): 3043, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35650211

RESUMO

Previous efforts on data-based reconstruction focused on complex networks with pairwise or two-body interactions. There is a growing interest in networks with higher-order or many-body interactions, raising the need to reconstruct such networks based on observational data. We develop a general framework combining statistical inference and expectation maximization to fully reconstruct 2-simplicial complexes with two- and three-body interactions based on binary time-series data from two types of discrete-state dynamics. We further articulate a two-step scheme to improve the reconstruction accuracy while significantly reducing the computational load. Through synthetic and real-world 2-simplicial complexes, we validate the framework by showing that all the connections can be faithfully identified and the full topology of the 2-simplicial complexes can be inferred. The effects of noisy data or stochastic disturbance are studied, demonstrating the robustness of the proposed framework.

17.
Research (Wash D C) ; 2022: 9870149, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600089

RESUMO

Data-based detection and quantification of causation in complex, nonlinear dynamical systems is of paramount importance to science, engineering, and beyond. Inspired by the widely used methodology in recent years, the cross-map-based techniques, we develop a general framework to advance towards a comprehensive understanding of dynamical causal mechanisms, which is consistent with the natural interpretation of causality. In particular, instead of measuring the smoothness of the cross-map as conventionally implemented, we define causation through measuring the scaling law for the continuity of the investigated dynamical system directly. The uncovered scaling law enables accurate, reliable, and efficient detection of causation and assessment of its strength in general complex dynamical systems, outperforming those existing representative methods. The continuity scaling-based framework is rigorously established and demonstrated using datasets from model complex systems and the real world.

18.
Chaos ; 32(4): 043110, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35489847

RESUMO

We uncover a phenomenon in coupled nonlinear networks with a symmetry: as a bifurcation parameter changes through a critical value, synchronization among a subset of nodes can deteriorate abruptly, and, simultaneously, perfect synchronization emerges suddenly among a different subset of nodes that are not directly connected. This is a synchronization metamorphosis leading to an explosive transition to remote synchronization. The finding demonstrates that an explosive onset of synchrony and remote synchronization, two phenomena that have been studied separately, can arise in the same system due to symmetry, providing another proof that the interplay between nonlinear dynamics and symmetry can lead to a surprising phenomenon in physical systems.

19.
ACS Nano ; 16(4): 4989-5035, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35318848

RESUMO

There is increasing interest in the study of chiral degrees of freedom occurring in matter and in electromagnetic fields. Opportunities in quantum sciences will likely exploit two main areas that are the focus of this Review: (1) recent observations of the chiral-induced spin selectivity (CISS) effect in chiral molecules and engineered nanomaterials and (2) rapidly evolving nanophotonic strategies designed to amplify chiral light-matter interactions. On the one hand, the CISS effect underpins the observation that charge transport through nanoscopic chiral structures favors a particular electronic spin orientation, resulting in large room-temperature spin polarizations. Observations of the CISS effect suggest opportunities for spin control and for the design and fabrication of room-temperature quantum devices from the bottom up, with atomic-scale precision and molecular modularity. On the other hand, chiral-optical effects that depend on both spin- and orbital-angular momentum of photons could offer key advantages in all-optical and quantum information technologies. In particular, amplification of these chiral light-matter interactions using rationally designed plasmonic and dielectric nanomaterials provide approaches to manipulate light intensity, polarization, and phase in confined nanoscale geometries. Any technology that relies on optimal charge transport, or optical control and readout, including quantum devices for logic, sensing, and storage, may benefit from chiral quantum properties. These properties can be theoretically and experimentally investigated from a quantum information perspective, which has not yet been fully developed. There are uncharted implications for the quantum sciences once chiral couplings can be engineered to control the storage, transduction, and manipulation of quantum information. This forward-looking Review provides a survey of the experimental and theoretical fundamentals of chiral-influenced quantum effects and presents a vision for their possible future roles in enabling room-temperature quantum technologies.

20.
Chaos ; 31(11): 113127, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34881621

RESUMO

Spatially distinct, self-sustained oscillations in artificial neural networks are fundamental to information encoding, storage, and processing in these systems. Here, we develop a method to induce a large variety of self-sustained oscillatory patterns in artificial neural networks and a controlling strategy to switch between different patterns. The basic principle is that, given a complex network, one can find a set of nodes-the minimum feedback vertex set (mFVS), whose removal or inhibition will result in a tree-like network without any loop structure. Reintroducing a few or even a single mFVS node into the tree-like artificial neural network can recover one or a few of the loops and lead to self-sustained oscillation patterns based on these loops. Reactivating various mFVS nodes or their combinations can then generate a large number of distinct neuronal firing patterns with a broad distribution of the oscillation period. When the system is near a critical state, chaos can arise, providing a natural platform for pattern switching with remarkable flexibility. With mFVS guided control, complex networks of artificial neurons can thus be exploited as potential prototypes for local, analog type of processing paradigms.


Assuntos
Redes Neurais de Computação , Neurônios , Retroalimentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...