Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
3.
PLoS One ; 16(1): e0245454, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33444382

RESUMO

Genome association studies in human and genetic studies in mouse implicated members of the transmembrane protein 132 (TMEM132) family in multiple conditions including panic disorder, hearing loss, limb and kidney malformation. However, the presence of five TMEM132 paralogs in mammalian genomes makes it extremely challenging to reveal the full requirement for these proteins in vivo. In contrast, there is only one TMEM132 homolog, detonator (dtn), in the genome of fruit fly Drosophila melanogaster, enabling straightforward research into its in vivo function. In the current study, we generate multiple loss-of-function dtn mutant fly strains through a polycistronic tRNA-gRNA approach, and show that most embryos lacking both maternal and paternal dtn fail to hatch into larvae, indicating an essential role of dtn in Drosophila reproduction.


Assuntos
Sistemas CRISPR-Cas , Drosophila melanogaster/genética , Edição de Genes , RNA Guia de Cinetoplastídeos/genética , RNA de Transferência/genética , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/fisiologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Feminino , Fertilidade , Edição de Genes/métodos , Mutação com Perda de Função , Masculino , Reprodução
4.
PLoS Genet ; 16(6): e1008792, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32579612

RESUMO

While rare pathogenic copy-number variants (CNVs) are associated with both neuronal and non-neuronal phenotypes, functional studies evaluating these regions have focused on the molecular basis of neuronal defects. We report a systematic functional analysis of non-neuronal defects for homologs of 59 genes within ten pathogenic CNVs and 20 neurodevelopmental genes in Drosophila melanogaster. Using wing-specific knockdown of 136 RNA interference lines, we identified qualitative and quantitative phenotypes in 72/79 homologs, including 21 lines with severe wing defects and six lines with lethality. In fact, we found that 10/31 homologs of CNV genes also showed complete or partial lethality at larval or pupal stages with ubiquitous knockdown. Comparisons between eye and wing-specific knockdown of 37/45 homologs showed both neuronal and non-neuronal defects, but with no correlation in the severity of defects. We further observed disruptions in cell proliferation and apoptosis in larval wing discs for 23/27 homologs, and altered Wnt, Hedgehog and Notch signaling for 9/14 homologs, including AATF/Aatf, PPP4C/Pp4-19C, and KIF11/Klp61F. These findings were further supported by tissue-specific differences in expression patterns of human CNV genes, as well as connectivity of CNV genes to signaling pathway genes in brain, heart and kidney-specific networks. Our findings suggest that multiple genes within each CNV differentially affect both global and tissue-specific developmental processes within conserved pathways, and that their roles are not restricted to neuronal functions.


Assuntos
Variações do Número de Cópias de DNA , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Transtornos do Neurodesenvolvimento/genética , Animais , Olho Composto de Artrópodes/embriologia , Olho Composto de Artrópodes/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Especificidade de Órgãos , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais , Asas de Animais/embriologia , Asas de Animais/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
6.
Exp Hematol ; 80: 42-54.e4, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31756359

RESUMO

In contrast to steady-state erythropoiesis, which generates new erythrocytes at a constant rate, stress erythropoiesis rapidly produces a large bolus of new erythrocytes in response to anemic stress. In this study, we illustrate that Yes-associated protein (Yap1) promotes the rapid expansion of a transit-amplifying population of stress erythroid progenitors in vivo and in vitro. Yap1-mutated erythroid progenitors failed to proliferate in the spleen after transplantation into lethally irradiated recipient mice. Additionally, loss of Yap1 impaired the growth of actively proliferating erythroid progenitors in vitro. This role in proliferation is supported by gene expression profiles showing that transiently amplifying stress erythroid progenitors express high levels of genes associated with Yap1 activity and genes induced by Yap1. Furthermore, Yap1 promotes the proliferation of stress erythroid progenitors in part by regulating the expression of key glutamine-metabolizing enzymes. Thus, Yap1 acts as an erythroid regulator that coordinates the metabolic status with the proliferation of erythroid progenitors to promote stress erythropoiesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas de Ciclo Celular/fisiologia , Células Precursoras Eritroides/fisiologia , Eritropoese/fisiologia , Regeneração/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Alelos , Animais , Divisão Celular , Células Cultivadas , Indução Enzimática , Células Precursoras Eritroides/citologia , Deleção de Genes , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/biossíntese , Quimera por Radiação , Tolerância a Radiação , Proteínas Recombinantes/metabolismo , Baço/citologia , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Proteínas de Sinalização YAP
7.
Blood Adv ; 3(14): 2205-2217, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31324641

RESUMO

Anemic stress induces the proliferation of stress erythroid progenitors in the murine spleen that subsequently differentiate to generate erythrocytes to maintain homeostasis. This process relies on the interaction between stress erythroid progenitors and the signals generated in the splenic erythroid niche. In this study, we demonstrate that although growth-differentiation factor 15 (Gdf15) is not required for steady-state erythropoiesis, it plays an essential role in stress erythropoiesis. Gdf15 acts at 2 levels. In the splenic niche, Gdf15-/- mice exhibit defects in the monocyte-derived expansion of the splenic niche, resulting in impaired proliferation of stress erythroid progenitors and production of stress burst forming unit-erythroid cells. Furthermore, Gdf15 signaling maintains the hypoxia-dependent expression of the niche signal, Bmp4, whereas in stress erythroid progenitors, Gdf15 signaling regulates the expression of metabolic enzymes, which contribute to the rapid proliferation of stress erythroid progenitors. Thus, Gdf15 functions as a comprehensive regulator that coordinates the stress erythroid microenvironment with the metabolic status of progenitors to promote stress erythropoiesis.


Assuntos
Células Precursoras Eritroides/metabolismo , Eritropoese/genética , Fator 15 de Diferenciação de Crescimento/genética , Nicho de Células-Tronco , Estresse Fisiológico , Animais , Diferenciação Celular , Proliferação de Células , Fator 15 de Diferenciação de Crescimento/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , Transdução de Sinais
8.
DNA Cell Biol ; 38(1): 91-106, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30461308

RESUMO

The considerable amount of experimental evidence has defined the Hippo pathway as a tumor suppressive pathway and increased expression and/or activity of its oncogenic effectors is frequently observed in cancer. However, clinical studies have failed to attribute cancer development and progression to mutations in the pathway. In explaining this conundrum, we investigated the expression and functions of a C-terminally truncated isoform of large tumor suppressor kinase 1 (LATS1) called short LATS1 (sLATS1) in human cell lines and Drosophila. Intriguingly, through overexpression of sLATS1, we demonstrated that sLATS1 either activates or suppresses the activity of Yes-associated protein (YAP), one of the effectors of the Hippo pathway, in a cell type-specific manner. The activation is mediated through inhibition of full-length LATS1, whereas suppression of YAP is accomplished through sLATS1-YAP interaction. In HEK293T cells, the former mechanism may affect the cellular response more dominantly, whereas in U2OS cells and developing tissues in Drosophila, the latter mechanism may be solely carried out. Finally, to find the clinical relevance of this molecule, we examined the expression of sLATS1 in breast cancer patients. The transcriptome analysis showed that the ratio of sLATS1 to LATS1 was increased in tumor tissues comparing to their adjacent normal tissues.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias da Mama/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Western Blotting , Carcinogênese/metabolismo , Técnicas de Cultura de Células , Fracionamento Celular , Proliferação de Células/genética , Drosophila , Proteínas de Drosophila/metabolismo , Feminino , Citometria de Fluxo , Imunofluorescência , Células HEK293 , Via de Sinalização Hippo , Humanos , Imunoprecipitação , Proteínas Nucleares/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Transativadores/metabolismo , Fatores de Transcrição , Proteínas de Sinalização YAP
9.
Methods Mol Biol ; 1893: 75-85, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30565126

RESUMO

Protein-protein interactions provide a common mechanism for regulating protein functions and also serve as the fundamental step of many biochemical reactions. To accurately determine the involvement and function of protein-protein interactions, it is crucial to detect the interactions with the minimum number of artifacts. In this chapter, we report the method of bimolecular fluorescence complementation (BiFC) in tissue culture and developing tissues of Drosophila, which allows the visualization of subcellular localization of protein-protein interactions in living cells.


Assuntos
Drosophila/metabolismo , Imunofluorescência , Imagem Molecular , Mapeamento de Interação de Proteínas , Animais , Linhagem Celular , Drosophila/embriologia , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Expressão Gênica , Humanos , Discos Imaginais , Microscopia de Fluorescência/métodos , Imagem Molecular/métodos , Mapeamento de Interação de Proteínas/métodos , Técnicas de Cultura de Tecidos , Asas de Animais
10.
Dev Biol ; 420(1): 186-195, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27693235

RESUMO

How organ growth is regulated in multicellular organisms is a long-standing question in developmental biology. It is known that coordination of cell apoptosis and proliferation is critical in cell number and overall organ size control, while how these processes are regulated is still under investigation. In this study, we found that functional loss of a gene in Drosophila, named Drosophila defender against apoptotic cell death 1 (dDad1), leads to a reduction of tissue growth due to increased apoptosis and lack of cell proliferation. The dDad1 protein, an orthologue of mammalian Dad1, was found to be crucial for protein N-glycosylation in developing tissues. Our study demonstrated that loss of dDad1 function activates JNK signaling and blocking the JNK pathway in dDad1 knock-down tissues suppresses cell apoptosis and partially restores organ size. In addition, reduction of dDad1 triggers ER stress and activates unfolded protein response (UPR) signaling, prior to the activation of JNK signaling. Furthermore, Perk-Atf4 signaling, one branch of UPR pathways, appears to play a dual role in inducing cell apoptosis and mediating compensatory cell proliferation in this dDad1 knock-down model.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/genética , Genes de Insetos , Morfogênese/genética , Animais , Apoptose/genética , Biocatálise , Proliferação de Células , Células Clonais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Técnicas de Silenciamento de Genes , Glicosilação , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases , Modelos Biológicos , Mutação/genética , Subunidades Proteicas/metabolismo , Frações Subcelulares/metabolismo
11.
Protein Cell ; 7(5): 362-72, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27000077

RESUMO

Mammalian pancreatic ß-cells play a pivotal role in development and glucose homeostasis through the production and secretion of insulin. Functional failure or decrease in ß-cell number leads to type 2 diabetes (T2D). Despite the physiological importance of ß-cells, the viability of ß-cells is often challenged mainly due to its poor ability to adapt to their changing microenvironment. One of the factors that negatively affect ß-cell viability is high concentration of free fatty acids (FFAs) such as palmitate. In this work, we demonstrated that Yes-associated protein (Yap1) is activated when ß-cells are treated with palmitate. Our loss- and gain-of-function analyses using rodent insulinoma cell lines revealed that Yap1 suppresses palmitate-induced apoptosis in ß-cells without regulating their proliferation. We also found that upon palmitate treatment, re-arrangement of F-actin mediates Yap1 activation. Palmitate treatment increases expression of one of the Yap1 target genes, connective tissue growth factor (CTGF). Our gain-of-function analysis with CTGF suggests CTGF may be the downstream factor of Yap1 in the protective mechanism against FFA-induced apoptosis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose/fisiologia , Ácidos Graxos não Esterificados/farmacologia , Fosfoproteínas/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Apoptose/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fator de Crescimento do Tecido Conjuntivo/farmacologia , Citocalasina D/farmacologia , Células HEK293 , Humanos , Imuno-Histoquímica , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Camundongos , Microscopia de Fluorescência , Ácido Palmítico/farmacologia , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Tiazolidinas/farmacologia , Fatores de Transcrição , Proteínas de Sinalização YAP
12.
Protein Cell ; 6(2): 81-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25492376

RESUMO

The loss of or decreased functional pancreatic ß-cell is a major cause of type 1 and type 2 diabetes. Previous studies have shown that adult ß-cells can maintain their ability for a low level of turnover through replication and neogenesis. Thus, a strategy to prevent and treat diabetes would be to enhance the ability of ß-cells to increase the mass of functional ß-cells. Consequently, much effort has been devoted to identify factors that can effectively induce ß-cell expansion. This review focuses on recent reports on small molecules and protein factors that have been shown to promote ß-cell expansion.


Assuntos
Proliferação de Células , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Células Secretoras de Insulina/química , Comunicação Celular/genética , Diferenciação Celular/genética , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 2/patologia , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia
13.
Protein Cell ; 6(1): 6-11, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25482410

RESUMO

In recent years, human cancer genome projects provide unprecedented opportunities for the discovery of cancer genes and signaling pathways that contribute to tumor development. While numerous gene mutations can be identified from each cancer genome, what these mutations mean for cancer is a challenging question to address, especially for those from less understood putative new cancer genes. As a powerful approach, in silico bioinformatics analysis could efficiently sort out mutations that are predicted to damage gene function. Such an analysis of human large tumor suppressor genes, LATS1 and LATS2, has been carried out and the results support a role of hLATS1//2 as negative growth regulators and tumor suppressors.


Assuntos
Proteínas Serina-Treonina Quinases/genética , Proteínas Supressoras de Tumor/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Biologia Computacional , Genes Neoplásicos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas com Domínio LIM/química , Proteínas com Domínio LIM/metabolismo , Camundongos , Mutação , Neoplasias/genética , Neoplasias/patologia , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Serina-Treonina Quinase 3 , Transferases (Outros Grupos de Fosfato Substituídos)/química , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Sinalização YAP
14.
Cell Rep ; 5(6): 1650-63, 2013 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-24360964

RESUMO

Abnormal activation of Wnt/ß-catenin-mediated transcription is associated with a variety of human cancers. Here, we report that LATS2 inhibits oncogenic Wnt/ß-catenin-mediated transcription by disrupting the ß-catenin/BCL9 interaction. LATS2 directly interacts with ß-catenin and is present on Wnt target gene promoters. Mechanistically, LATS2 inhibits the interaction between BCL9 and ß-catenin and subsequent recruitment of BCL9, independent of LATS2 kinase activity. LATS2 is downregulated and inversely correlated with the levels of Wnt target genes in human colorectal cancers. Moreover, nocodazole, an antimicrotubule drug, potently induces LATS2 to suppress tumor growth in vivo by targeting ß-catenin/BCL9. Our results suggest that LATS2 is not only a key tumor suppressor in human cancer but may also be an important target for anticancer therapy.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Células HEK293 , Humanos , Ligação Proteica , Fatores de Transcrição , Transcrição Gênica
15.
Protein Cell ; 4(12): 904-10, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24248471

RESUMO

Hippo signaling plays a crucial role in growth control and tumor suppression by regulating cell proliferation, apoptosis, and differentiation. How Hippo signaling is regulated has been under extensive investigation. Over the past three years, an increasing amount of data have supported a model of actin cytoskeleton blocking Hippo signaling activity to allow nuclear accumulation of a downstream effector, Yki/Yap/Taz. On the other hand, Hippo signaling negatively regulates actin cytoskeleton organization. This review provides insight on the mutual regulatory mechanisms between Hippo signaling and actin cytoskeleton for a tight control of cell behaviors during animal development, and points out outstanding questions for further investigations.


Assuntos
Citoesqueleto de Actina/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proliferação de Células , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica , Via de Sinalização Hippo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP
16.
Genetics ; 195(3): 1193-6, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24026096

RESUMO

The role of Large tumor suppressor LATS/Warts in human cancer is not clearly understood. Here we show that hLATS1/2 cancer mutations affect their expression and kinase activity. hLATS1/2 mutants exhibit a decreased activity in inhibiting YAP and tissue growth. Therefore, hLATS1/2 alleles from human cancer can be loss-of-function mutations.


Assuntos
Genes Supressores de Tumor , Neoplasias/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Supressoras de Tumor/genética , Animais , Animais Geneticamente Modificados , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Feminino , Humanos , Masculino , Modelos Genéticos , Mutação , Interferência de RNA , Asas de Animais/crescimento & desenvolvimento
17.
Biochem Biophys Res Commun ; 439(4): 438-42, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-24016667

RESUMO

The evolutionarily conserved Hippo signaling pathway plays an important role in regulating normal development as well as tumorigenesis in animals. How this growth-inhibitory signaling is maintained at an appropriate level through feedback mechanisms is less understood. In this report, we show that bantam microRNA functions to increase the level of the Mob as tumor suppressor protein Mats, a core component of the Hippo pathway, but does not regulate mats at the transcript level. Genetic analysis also supports that bantam plays a positive role in regulating mats function for tissue growth control. Our data support a model that bantam up-regulates Mats expression through an unidentified factor that may control Mats stability.


Assuntos
Proteínas de Drosophila/genética , Drosophila/metabolismo , MicroRNAs/genética , Proteínas Supressoras de Tumor/genética , Animais , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Regulação para Cima
18.
Genes Dev ; 27(11): 1223-32, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23752589

RESUMO

The Hippo tumor suppressor pathway plays an important role in tissue homeostasis that ensures development of functional organs at proper size. The YAP transcription coactivator is a major effector of the Hippo pathway and is phosphorylated and inactivated by the Hippo pathway kinases Lats1/2. It has recently been shown that YAP activity is regulated by G-protein-coupled receptor signaling. Here we demonstrate that cyclic adenosine monophosphate (cAMP), a second messenger downstream from Gαs-coupled receptors, acts through protein kinase A (PKA) and Rho GTPases to stimulate Lats kinases and YAP phosphorylation. We also show that inactivation of YAP is crucial for PKA-induced adipogenesis. In addition, PKA activation in Drosophila inhibits the expression of Yorki (Yki, a YAP ortholog) target genes involved in cell proliferation and death. Taken together, our study demonstrates that Hippo-YAP is a key signaling branch of cAMP and PKA and reveals new insight into mechanisms of PKA in regulating a broad range of cellular functions.


Assuntos
Diferenciação Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Drosophila/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Aciltransferases , Adipogenia , Animais , Linhagem Celular , Proliferação de Células , AMP Cíclico/metabolismo , Proteínas de Drosophila/antagonistas & inibidores , Drosophila melanogaster/enzimologia , Drosophila melanogaster/metabolismo , Ativação Enzimática , Humanos , Camundongos , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Fosforilação , Sistemas do Segundo Mensageiro/fisiologia , Serina-Treonina Quinase 3 , Transativadores/antagonistas & inibidores , Transativadores/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Sinalização YAP , Proteínas rho de Ligação ao GTP/metabolismo
19.
Dev Biol ; 380(2): 344-50, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23707898

RESUMO

BRMS1 was first discovered as a human breast carcinoma metastasis suppressor gene. However, the mechanism of BRMS1 in tumor metastasis and its developmental role remain unclear. In this paper, we first report the identification of the Drosophila ortholog of human BRMS1, dBrms1. Through a genetic approach, the role of dBrms1 during development has been investigated. We found that dBrms1 is an essential gene and loss of dBrms1 function results in lethality at early developmental stages. dBrms1mutants displayed phenotypes such as developmental delay and failure to initiate metamorphosis. Further analysis suggests that these phenotypes are contributed by defective ecdysone signaling and expression of target genes of the ecdysone pathway. Therefore, dBrms1 is required for growth control by acting as a modulator of ecdysone signaling in Drosophila and is required for metamorphosis for normal development.


Assuntos
Ecdisona/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Genes Supressores de Tumor , Proteínas de Neoplasias/genética , Animais , Drosophila , Metamorfose Biológica , Mutação , Proteínas Repressoras , Transdução de Sinais , Fatores de Tempo , Transgenes
20.
Dev Biol ; 375(2): 152-9, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23298890

RESUMO

Hippo (Hpo) signaling plays a critical role in restricting tissue growth and organ size in both invertebrate and vertebrate animals. However, how the Hpo kinase is regulated during development has not been clearly understood. Using a Bimolecular Fluorescence Complementation assay, we have investigated the functional significance of Hpo homo-dimer formation and subcellular localization in living cells. We found that Hpo dimerization and membrane association are critical for its activation in growth inhibition. As dimerization facilitates Hpo to access its binding partner, Hpo kinases in the homo-dimer trans-phosphorylate each other to increase their enzymatic activity. Moreover, loss- and gain-of-function studies indicate that upstream regulators, Expanded, Merlin and Kibra, play a critical role in promoting Hpo dimerization as well as association to the cortical F-actin beneath the plasma membrane. Enforced Hpo localization to the plasma membrane increases Hpo dimerization and activity. Therefore, homo-dimerization and plasma membrane association are two important mechanisms for Hpo activation in growth control during animal development.


Assuntos
Membrana Celular/enzimologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Drosophila melanogaster/crescimento & desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Multimerização Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Sobrevivência Celular , Drosophila melanogaster/anatomia & histologia , Ativação Enzimática , Fluorescência , Genes Dominantes , Mutação , Tamanho do Órgão , Fosforilação , Ligação Proteica , Transporte Proteico , Frações Subcelulares/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...