Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5676, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453942

RESUMO

Actinobacteria are one of the predominant groups that successfully colonize and survive in various aquatic, terrestrial and rhizhospheric ecosystems. Among actinobacteria, Nocardia is one of the most important agricultural and industrial bacteria. Screening and isolation of Nocardia related bacteria from extreme habitats such as endolithic environments are beneficial for practical applications in agricultural and environmental biotechnology. In this work, bioinformatics analysis revealed that a novel strain Nocardia mangyaensis NH1 has the capacity to produce structurally varied bioactive compounds, which encoded by non-ribosomal peptide synthases (NRPS), polyketide synthase (PKS), and post-translationally modified peptides (RiPPs). Among NRPS, five gene clusters have a sequence homology with clusters encoding for siderophore synthesis. We also show that N. mangyaensis NH1 accumulates both catechol- and hydroxamate-type siderophores simultaneously under iron-deficient conditions. Untargeted LC-MS/MS analysis revealed a variety of metabolites, including siderophores, lipopeptides, cyclic peptides, and indole-3-acetic acid (IAA) in the culture medium of N. mangyaensis NH1 grown under iron deficiency. We demonstrate that four CAS (chrome azurol S)-positive fractions display variable affinity to metals, with a high Fe3+ chelating capability. Additionally, three of these fractions exhibit antioxidant activity. A combination of iron scavenging metabolites produced by N. mangyaensis NH1 showed antifungal activity against several plant pathogenic fungi. We have shown that the pure culture of N. mangyaensis NH1 and its metabolites have no adverse impact on Arabidopsis seedlings. The ability of N. mangyaensis NH1 to produce siderophores with antifungal, metal-chelating, and antioxidant properties, when supplemented with phytohormones, has the potential to improve the release of macro- and micronutrients, increase soil fertility, promote plant growth and development, and enable the production of biofertilizers across diverse soil systems.


Assuntos
Actinobacteria , Nocardia , Nocardia/genética , Nocardia/metabolismo , Sideróforos/metabolismo , Ecossistema , Antifúngicos/farmacologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Actinobacteria/metabolismo , Ferro/metabolismo , Bactérias/metabolismo , Genômica , Metaboloma , Solo
2.
J Nat Prod ; 86(8): 1939-1949, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37497692

RESUMO

A convenient synthesis is presented for a new class of bioactive bifunctionalized conjugates of lupane-type triterpenoids with triphenylphosphonium (TPP) and glycopyranosyl targeting moieties. The main synthesis steps include glycosylation of haloalkyl esters of the triterpene acid at the C-3 position by the imidate derivatives of glycopyranose followed by the product modification at the C-28 position with triphenylphosphine. The conjugates of betulinic acid (BetA) with TPP and d-glucose, l-rhamnose, or d-mannose moieties were thus synthesized as potential next-generation BetA-derived anticancer compounds. LC-MS/MS analysis in glucose-free physiological solution indicated that the glycosides showed better accumulation in PC-3 prostate cancer cells than both BetA and TPP-BetA conjugate, while the transporting effect of monosaccharide residues increased as follows: d-mannose < l-rhamnose ≈ d-glucose. At saturated concentrations, the glycosides caused a disturbing effect on mitochondria with a more drastic drop in transmembrane potential but weaker overproduction of mitochondrial reactive oxygen species (ROS) compared to TPP-BetA conjugate. Cytotoxicity of the glycosides in culture medium was comparable with or higher than that of the nonglycosylated conjugate, depending on the cancer cell line, whereas the compounds were less active toward primary fibroblasts. Glycosylation tended to increase pro-apoptotic and decrease pro-autophagic activities of the BetA derivatives. Cytotoxicity of the synthesized glycosides was considered in comparison with the summarized data on the natural and modified BetA glycosides. The results obtained are important for the development of bifunctionalized conjugates of triterpenoids with an increased cancer cell targetability.


Assuntos
Neoplasias , Triterpenos , Masculino , Humanos , Ácido Betulínico , Manose , Cromatografia Líquida , Ramnose , Espectrometria de Massas em Tandem , Triterpenos/farmacologia , Triterpenos/química , Glicosídeos
3.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36834957

RESUMO

Multiple sclerosis (MS) is a debilitating chronic disease of unknown etiology. There are limited treatment options due to an incomplete understanding of disease pathology. The disease is shown to have seasonal exacerbation of clinical symptoms. The mechanisms of such seasonal worsening of symptoms remains unknown. In this study, we applied targeted metabolomics analysis of serum samples using LC-MC/MC to determine seasonal changes in metabolites throughout the four seasons. We also analyzed seasonal serum cytokine alterations in patients with relapsed MS. For the first time, we can demonstrate seasonal changes in various metabolites in MS compared to the control. More metabolites were affected in MS in the fall season followed by spring, while summer MS was characterized by the smallest number of affected metabolites. Ceramides were activated in all seasons, suggesting their central role in the disease pathogenesis. Substantial changes in glucose metabolite levels were found in MS, indicating a potential shift to glycolysis. An increased serum level of quinolinic acid was demonstrated in winter MS. Histidine pathways were affected, suggesting their role in relapse of MS in the spring and fall. We also found that spring and fall seasons had a higher number of overlapping metabolites affected in MS. This could be explained by patients having a relapse of symptoms during these two seasons.


Assuntos
Esclerose Múltipla , Humanos , Estações do Ano , Citocinas , Doença Crônica , Recidiva
4.
Artigo em Inglês | MEDLINE | ID: mdl-36593927

RESUMO

We study for the first time whether triphenylphosphonium (TPP) moiety can improve cellular delivery and redox properties of amphipathic cationic peptides based on YRFK/YrFK cell-penetrating and cytoprotective motif. TPP moiety was found to increase reducing activity of both stereoisomeric peptides in solution and on electrode surface in association with TPP-mediated intramolecular interactions. Among TPP-conjugated peptides, newly synthesized TPP3-YrFK featured both increased antioxidant efficacy and proteolytic resistance. TPP-conjugated peptides preferably mitigated endogenic ROS in mitochondria and cytoplasm of model glioblastoma cells with increased oxidative status. This anti-ROS effect was accompanied by mild reversible decrease of reduced glutathione level in the cells with relatively weak change in glutathione redox forms ratio. Such low interference with cell redox status is in accordance with non-cytotoxic nature of the compounds. Intracellular concentrations of label-free peptides were analyzed by LC-MS/MS, which showed substantial TPP-promoted penetration of YrFK motif across cell plasma membrane. However, according to ΔΨm analysis, TPP moiety did not profoundly enhance peptide interaction with mitochondrial inner membrane. Our study clarifies the role of TPP moiety in cellular delivery of amphipathic cationic oligopeptides. The results suggest TPP moiety as a multi-functional modifier for the oligopeptides which is capable of improving cellular pharmacokinetics and antioxidant activity as well as targeting increased ROS levels. The results encourage further investigation of TPP3-YrFK as a peptide antioxidant with multiple benefits.

5.
mSphere ; 7(6): e0021222, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36218346

RESUMO

Bacteria can quickly adapt to constantly changing environments through a number of mechanisms, including secretion of secondary metabolites, peptides, and proteins. Serratia marcescens, an emerging pathogen with growing clinical importance due to its intrinsic resistance to several classes of antibiotics, can cause an array of infections in immunocompromised individuals. To better control the spread of S. marcescens infections, it is critical to identify additional targets for bacterial growth inhibition. We found that extracellular metabolites produced by the wild-type organism in response to peroxide exposure had a protective effect on an otherwise-H2O2-sensitive ΔmacAB indicator strain. Detailed analysis of the conditioned medium demonstrated that the protective effect was associated with a low-molecular-weight heat-sensitive and proteinase K-sensitive metabolite. Furthermore, liquid chromatography-tandem mass spectrometry analysis of the low-molecular-weight proteins present in the conditioned medium led to identification of the previously uncharacterized DUF1471-containing protein TBU67220 (SrfN). We found that loss of the srfN gene did not have an impact on the production of extracellular enzymes. However, the S. marcescens mutant lacking SrfN was significantly more sensitive to growth in medium with a low pH and to exposure to oxidative stress. Both defects were fully rescued by complementation. Thus, our results indicate that SrfN, a low-molecular-weight DUF1471-containing protein, is involved in S. marcescens SM6 adaptation to adverse environmental conditions. IMPORTANCE Serratia marcescens is ubiquitous in the environment and can survive in water, soil, plants, insects, and animals, and it can also cause infections in humans. In the face of disturbances such as oxidative or low-pH stress, bacteria adapt, survive, and recover through several mechanisms, including changes in their secretome. We show that a hydrogen peroxide-exposed S. marcescens milieu contains a small previously uncharacterized DUF1471-containing protein similar to the SrfN protein in Salmonella enterica serovar Typhimurium, and we illustrate the role of this protein in bacterial survival during acid and oxidative stresses.


Assuntos
Peróxido de Hidrogênio , Serratia marcescens , Humanos , Animais , Serratia marcescens/genética , Serratia marcescens/metabolismo , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Meios de Cultivo Condicionados , Antibacterianos/metabolismo , Estresse Oxidativo
6.
Food Chem ; 396: 133665, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35908476

RESUMO

This article presents data on electron paramagnetic resonance (EPR) and mass spectrometric analysis of potato tubers, irradiated with gamma rays, in order to examine and identify changes in the molecular composition of organic matter following radiation exposure. The products of the Maillard reaction were compared with the products of intramolecular radiolysis of organic constituents of potatoes. The presence of free radicals was verified using EPR. DDPM (2,3-dihydro-3,5-dihydroxy-6-methyl-4 (H) -pyran-4-one) was among the radiolysis products detected via mass spectrometry, which points to the intramolecular dehydration of potato carbohydrates. EPR signals indicate single-electron transitions of the semidione radical anionic molecular compounds. It has been shown that irradiation with gamma rays significantly destroys the carbohydrate, lipid, keto-carotene and amino acid molecules of potatoes.


Assuntos
Solanum tuberosum , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/química , Raios gama , Espectrometria de Massas , Tubérculos/química
7.
Appl Microbiol Biotechnol ; 106(8): 3153-3171, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35396956

RESUMO

The Tsukamurella tyrosinosolvens PS2 strain was isolated from hydrocarbons-contaminated petrochemical sludge as a long chain alkane-utilizing bacteria. Complete genome analysis showed the presence of two alkane oxidation systems: alkane 1-monooxygenase (alkB) and cytochrome P450 monooxygenase (P450) genes with established high homology to the well-known alkane-degrading actinobacteria. According to the comparative genome analysis, both systems have a wide distribution among environmental and clinical isolates of the genus Tsukamurella and other members of Actinobacteria. We compared the expression of different proteins during the growth of Tsukamurella on sucrose and on hexadecane. Both alkane monooxygenases were upregulated on hexadecane: AlkB-up to 2.5 times, P450-up to 276 times. All proteins of the hexadecane oxidation pathway to acetyl-CoA were also upregulated. Accompanying proteins for alkane degradation involved in biosurfactant synthesis and transport of organic and inorganic molecules were increased. The change in the carbon source affected the pathways for the regulation of translation and transcription. The proteomic profile showed that hexadecane is an adverse factor causing activation of general and universal stress proteins as well as shock and resistance proteins. Differently expressed proteins of Tsukamurella tyrosinosolvens PS2 shed light on the alkane degradation in other members of Actinobacteria class. KEY POINTS: • alkB and P450 systems have a wide distribution among the genus Tsukamurella. • alkB and P450 systems have coexpression with the predominant role of P450 protein. • Hexadecane causes significant changes in bacterial proteome.


Assuntos
Actinomycetales , Proteômica , Actinobacteria , Actinomycetales/genética , Actinomycetales/metabolismo , Alcanos/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Citocromo P-450 CYP4A/genética , Citocromo P-450 CYP4A/metabolismo
8.
Antioxidants (Basel) ; 11(2)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35204274

RESUMO

Thiol compounds including predominantly glutathione (GSH) are key components of redox homeostasis, which are involved in the protection and regulation of mammalian cells. The assessment of cell redox status by means of in situ analysis of GSH in living cells is often preferable over established assays in cell lysates due to fluctuations of the GSH pool. For this purpose, we propose a microplate assay with monochlorobimane (MCB) as an available fluorescent probe for GSH, although poorly detected in the microplate format. In addition to the new procedure for improved MCB-assisted GSH detection in plate-grown cells and its verification with GSH modulators, this study provides a useful methodology for the evaluation of cell redox status probed through relative GSH content and responsiveness to both supplemented thiols and variation in oxygen pressure. The roles of extracellular interactions of thiols and natural variability of cellular glutathione on the assay performance were emphasized and discussed. The results are of broad interest in cell biology research and should be particularly useful for the characterization of pathological cells with decreased GSH status and increased oxidative status as well as redox-modulating factors.

9.
Artigo em Inglês | MEDLINE | ID: mdl-35030474

RESUMO

Liquid chromatography (LC) - mass spectrometry quantitative analysis of substances in biological samples is usually performed in the multiple reaction monitoring (MRM) variant. In complex biological matrices, strong interferences can be observed when using the LC-MRM method. Interference levels can be significantly reduced by using LC - multiple reaction monitoring cubed (MRM3). 6-sulfatoxymelatonin (6-SM) is a metabolite of melatonin, an important regulator of many biological processes. The quantitative analysis of 6-SM in urine allows monitoring of the melatonin level in the blood. The aim of the present work was to evaluate the LC-MRM3 method for the quantitative determination of 6-SM in urine. We found that for 6-SM in aqueous solutions, under some parameters of the MRM3 experiment, the effect of degradation of the MRM3 signal is observed. When analyzing 6-SM in urine, this signal degradation effect was significantly reduced. We have shown that optimization of such parameters of the MRM3 method as the linear ion trap fill time, the number of scans to sum, and the range of triple-stage scan allows obtaining the LC-MRM3 method, which is comparable to the LC-MRM in sensitivity and significantly exceeds it in selectivity.


Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Melatonina/análogos & derivados , Humanos , Melatonina/metabolismo , Melatonina/urina
10.
Environ Geochem Health ; 44(4): 1299-1315, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34528142

RESUMO

The contamination with organic and inorganic pollutants changes significantly soil microbial community structure. These shifts indicate anthropogenic pressure and help to discover new possibilities for soil remediation. In this study, the microbial community structure of Spolic Technosols formed at the territory of a former industrial sludge reservoir near the Kamensk-Shakhtinsky (Southern Russia) was studied using a metagenomics approach. The studied soils contain high concentrations of heavy metals (HM) (up to 72,900 mg kg-1) and 16 priority polycyclic aromatic hydrocarbons (PAHs) (up to 6670 mg kg-1). Its microbial communities demonstrate an excellent adaptability level reflected in their complexity and diversity. As shown by the high values of alpha diversity indices (Shannon values up to 10.1, Chao1 values from 1430 to 4273), instead of decreasing quantitatively and qualitatively on the systemic level, microbial communities tend to undergo complex redistribution. Regardless of contamination level, the share of Actinobacteria and Proteobacteria was consistently high and varied from 20 to 50%. Following the results of the Mann-Whitney U test, there were significant changes of less abundant phyla. The abundance of oligotrophic bacteria from Gemmatimonadetes and Verrucomicrobia phyla and autotrophic bacteria (e.g., Nitrospira) decreased due to the high PAH's level. And abundance of Firmicutes and amoebae-associated bacteria such as TM6 and soil Chlamydia increased in highly contaminated plots. In the Spolic Technosols studied, the influence of factors on the microbial community composition decreased from PAHs concentration to soil characteristics (organic carbon content) and phylum-phylum interactions. The high concentrations of HMs influenced weakly on the microbial community composition.


Assuntos
Metais Pesados , Microbiota , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Lagos , Metais Pesados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
11.
Life (Basel) ; 11(10)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34685379

RESUMO

Tay-Sachs disease (TSD) is a progressive neurodegenerative disorder that occurs due to a deficiency of a ß hexosaminidase A (HexA) enzyme, resulting in the accumulation of GM2 gangliosides. In this work, we analyzed the effect of umbilical cord blood cell transplantation (UCBCT) and curcumin administration on the course of the disease in a patient with adult TSD. The patient's serum cytokine profile was determined using multiplex analysis. The level of GM2 gangliosides in plasma was determined using mass spectrometry. The enzymatic activity of HexA in the plasma of the patient was assessed using a fluorescent substrate assay. The HexA α-subunit (HexA) concentration was determined using ELISA. It was shown that both UCBCT and curcumin administration led to a change in the patient's cytokine profile. The UCBCT resulted in an increase in the concentration of HexA in the patient's serum and in an improvement in the patient's neurological status. However, neither UCBCT nor curcumin were able to alter HexA activity and the level of GM2 in patient's plasma. The data obtained indicate that UCBCT and curcumin administration can alter the immunity of a patient with TSD, reduce the level of inflammatory cytokines and thereby improve the patient's condition.

12.
Microorganisms ; 9(6)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203637

RESUMO

Crohn's disease (CD) is characterized by a chronic, progressive inflammation across the gastrointestinal tract with a series of exacerbations and remissions. A significant factor in the CD pathogenesis is an imbalance in gut microbiota composition, particularly the prevalence of Escherichia coli. In the present study, the genomes of sixty-three E. coli strains from the gut of patients with CD and healthy subjects were sequenced. In addition, eighteen E. coli-like metagenome-assembled genomes (MAGs) were reconstructed from the shotgun-metagenome sequencing data of fecal samples. The comparative analysis revealed the similarity of E. coli genomes regardless of the origin of the strain. The strains exhibited similar genetic patterns of virulence, antibiotic resistance, and bacteriocin-producing systems. The study showed antagonistic activity of E. coli strains and the metabolic features needed for their successful competition in the human gut environment. These observations suggest complex bacterial interactions within the gut which may affect the host and cause intestinal damage.

13.
Inflamm Bowel Dis ; 27(3): 418-433, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-32766755

RESUMO

BACKGROUND: Several studies have highlighted the role of host-microbiome interactions in the pathogenesis of inflammatory bowel disease (IBD), resulting in an increasing amount of data mainly focusing on Western patients. Because of the increasing prevalence of IBD in newly industrialized countries such as those in Asia, the Middle East, and South America, there is mounting interest in elucidating the gut microbiota of these populations. We present a comprehensive analysis of several IBD-related biomarkers and gut microbiota profiles and functions of a unique population of patients with IBD and healthy patients from Kazan (Republic of Tatarstan, Russia). METHODS: Blood and fecal IBD biomarkers, serum cytokines, and fecal short-chain fatty acid (SCFA) content were profiled. Finally, fecal microbiota composition was analyzed by 16S and whole-genome shotgun sequencing. RESULTS: Fecal microbiota whole-genome sequencing confirmed the presence of classic IBD dysbiotic features at the phylum level, with increased abundance of Proteobacteria, Actinobacteria, and Fusobacteria and decreased abundance of Firmicutes, Bacteroidetes, and Verrucomicrobia. At the genus level, the abundance of both fermentative (SCFA-producing and hydrogen (H2)-releasing) and hydrogenotrophic (H2-consuming) microbes was affected in patients with IBD. This imbalance was confirmed by the decreased abundance of SCFA species in the feces of patients with IBD and the change in anaerobic index, which mirrors the redox status of the intestine. CONCLUSIONS: Our analyses highlighted how IBD-related dysbiotic microbiota-which are generally mainly linked to SCFA imbalance-may affect other important metabolic pathways, such as H2 metabolism, that are critical for host physiology and disease development.


Assuntos
Disbiose , Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Disbiose/etnologia , Fezes , Humanos , Doenças Inflamatórias Intestinais/etnologia , Tartaristão
14.
Int J Mol Sci ; 21(21)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167434

RESUMO

Unpredictable influenza pandemics, annual epidemics, and sporadic poultry-to-human avian influenza virus infections with high morbidity and mortality rates dictate a need to develop new antiviral approaches. Targeting cellular pathways and processes is a promising antiviral strategy shown to be effective regardless of viral subtypes or viral evolution of drug-resistant variants. Proteomics-based searches provide a tool to reveal the druggable stages of the virus life cycle and to understand the putative antiviral mode of action of the drug(s). Ribonucleases (RNases) of different origins not only demonstrate antiviral effects that are mediated by the direct RNase action on viral and cellular RNAs but can also exert their impact by signal transduction modulation. To our knowledge, studies of the RNase-affected cell proteome have not yet been performed. To reveal cellular targets and explain the mechanisms underlying the antiviral effect employed by the small extra-cellular ribonuclease of Bacillus pumilus (binase) both in vitro and in vivo, qualitative shotgun and quantitative targeted proteomic analyses of the influenza A virus (IAV) H1N1pdm09-infected A549 cells upon binase treatment were performed. We compared proteomes of mock-treated, binase-treated, virus-infected, and virus-infected binase-treated cells to determine the proteins affected by IAV and/or binase. In general, IAV demonstrated a downregulating strategy towards cellular proteins, while binase had an upregulating effect. With the help of bioinformatics approaches, coregulated cellular protein sets were defined and assigned to their biological function; a possible interconnection with the progression of viral infection was conferred. Most of the proteins downregulated by IAV (e.g., AKR1B1, AKR1C1, CCL5, PFN1, RAN, S100A4, etc.) belong to the processes of cellular metabolism, response to stimulus, biological regulation, and cellular localization. Upregulated proteins upon the binase treatment (e.g., AKR1B10, CAP1, HNRNPA2B1, PFN1, PPIA, YWHAB, etc.) are united by the processes of biological regulation, cellular localization, and immune and metabolic processes. The antiviral activity of binase against IAV was expressed by the inversion of virus-induced proteomic changes, resulting in the inhibition of virus-associated processes, including nuclear ribonucleoprotein export (NCL, NPM1, Nup205, and Bax proteins involved) and cytoskeleton remodeling (RDX, PFN1, and TUBB) induced by IAV at the middle stage of single-cycle infection in A549 cells. Modulation of the immune response could be involved as well. Overall, it seems possible that binase exerts its antiviral effects in multiple ways.


Assuntos
Endorribonucleases/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Células A549 , Animais , Antivirais/metabolismo , Antivirais/farmacologia , Bacillus pumilus/enzimologia , Bacillus pumilus/metabolismo , Linhagem Celular , Endorribonucleases/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/patogenicidade , Influenza Humana/virologia , Nucleofosmina , Proteoma , Proteômica/métodos , Ribonucleases/metabolismo , Replicação Viral/efeitos dos fármacos
15.
Insects ; 11(9)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32947792

RESUMO

Multiple co-localized paralogs of genes in Polypedilum vanderplanki's genome have strong transcriptional response to dehydration and considered to be a part of adaptation machinery at the larvae stage. One group of such genes represented by L-isoaspartate O-methyltransferases (PIMT). In order to highlight specific role of PIMT paralogization in desiccation tolerance of the larvae we annotated and compared S-adenosylmethionine (SAM) dependent methyltransferases of four insect species. From another side we applied co-expression analysis in desiccation/rehydration time course and showed that PIMT coding genes could be separated into five clusters by expression profile. We found that among Polypedilum vanderplanki's PIMTs only PIMT1 and PIMT2 have enzymatic activity in normal physiological conditions. From in silico analysis of the protein structures we found two highly variable regions outside of the active center, but also amino acid substitutions which may affect SAM stabilization. Overall, in this study we demonstrated features of Polypedilum vanderplanki's PIMT coding paralogs related to different roles in desiccation tolerance of the larvae. Our results also suggest a role of different SAM-methyltransferases in the adaptation, including GSMT, JHAMT, and candidates from other classes, which could be considered in future studies.

16.
Int J Mol Sci ; 21(14)2020 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-32664686

RESUMO

Bacillus subtilis produces eight industrially important exo-proteases. For the detection of proteases, the activity- and antibody-based assays are normally used. Current activity-based assays require expensive multiplex chemical substrates which allow specificity determination of each enzyme. In this study, we provide evidences pertaining to the usefulness of the label-free multiple reaction monitoring (MRM) assay for a rapid identification and quantitation of specific proteins in bacteria. We used wild-type B. pumilus cells producing at least two serine proteases, subtilisin-like protease (AprBp) and glutamyl endopeptidase (GseBp), as well as optimized recombinant B. subtilis cells containing the same protease genes under control of the LIKE expression system. The Skyline software was used for the selection of three specific proteotypic peptides and their fragment ions for quantification and confirmation of AprBp and GseBp in complex mixtures. MRM indicated that the production of AprBp and GseBp exo-enzymes were respectively 0.9- and 26.6-fold higher in the culture medium of B. pumilus strain in comparison to the recombinant B. subtilis strains carrying optimized LIKE expression systems under identical conditions. The developed procedure in this study is fast, easy to perform and dependable. Additionally, it achieves accurate proteins identification and quantification in complex mixture.


Assuntos
Bacillus pumilus/química , Bacillus subtilis/química , Proteínas de Bactérias/análise , Espectrometria de Massas/métodos , Proteômica/métodos , Proteínas Recombinantes/análise , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Fragmentos de Peptídeos/análise , Serina Endopeptidases/análise , Serina Proteases/análise , Software
17.
Biomolecules ; 10(2)2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32046176

RESUMO

Chronic kidney disease (CKD) is an important public health problem in the world. The aim of our research was to identify novel potential serum biomarkers of renal injury. ELISA assay showed that cytokines and chemokines IL-1ß, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12 (p70), IL-13, IL-15, IL-17, Eotaxin, FGFb, G-CSF, GM-CSF, IP-10, MCP-1, MIP-1α, MIP-1ß, PDGF-1bb, RANTES, TNF-α and VEGF were significantly higher (R > 0.6, p value < 0.05) in the serum of patients with CKD compared to healthy subjects, and they were positively correlated with well-established markers (urea and creatinine). The multiple reaction monitoring (MRM) quantification method revealed that levels of HSP90B2, AAT, IGSF22, CUL5, PKCE, APOA4, APOE, APOA1, CCDC171, CCDC43, VIL1, Antigen KI-67, NKRF, APPBP2, CAPRI and most complement system proteins were increased in serum of CKD patients compared to the healthy group. Among complement system proteins, the C8G subunit was significantly decreased three-fold in patients with CKD. However, only AAT and HSP90B2 were positively correlated with well-established markers and, therefore, could be proposed as potential biomarkers for CKD.


Assuntos
Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/fisiopatologia , Adulto , Idoso , Biomarcadores/sangue , Quimiocinas/análise , Quimiocinas/sangue , Citocinas/análise , Citocinas/sangue , Feminino , Proteínas de Choque Térmico HSP90/sangue , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Inflamação/sangue , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/análise , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Masculino , Pessoa de Meia-Idade , Proteômica/métodos , Insuficiência Renal Crônica/sangue , alfa 1-Antitripsina/sangue , alfa 1-Antitripsina/metabolismo
18.
Data Brief ; 28: 104948, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31886370

RESUMO

Dysbiosis of the gut microbiota in inflammatory bowel disease (IBD) patients is of great interest. It has been reported that Crohn's disease (CD) is associated with a general decrease in microbial diversity [1]. Altered microbial composition and function in CD results in imbalance in host-bacteria interaction and increased immune stimulation [2]. It is shown that microbiota in CD is characterized by increased proportion of E. coli in human gut in contrast to healthy individuals [3]. However, the overall qualitative and quantitative diversity of E. coli strains in CD is not fully understood. Here, we present a dataset of whole-genome sequences of E. coli's.

19.
Microbiol Resour Announc ; 8(17)2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31023793

RESUMO

Here, we report the genome sequence of Tsukamurella tyrosinosolvens strain PS2, which was isolated from hydrocarbon sludge of an organic synthesis factory. This strain was able to utilize a wide range of n-alkanes, from C16 to C35, as sole carbon sources. Knowledge of the genome will provide insights into long-chain n-alkane biodegradation mechanisms.

20.
Biomed Res Int ; 2019: 9843781, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30733970

RESUMO

BACKGROUND: The aim of this study was to assess changes in skin microbiota of wrestlers during training sessions and to determine the sensitivity of hemolytic bacterial isolates to antiseptics. METHODS: The main skin bacterial isolates obtained from the skin of 15 wrestlers were identified by cultivation method, with the following MALDI Biotyper and 16S rRNA gene sequencing methods. The sensitivity of hemolytic isolates to antiseptics (Veltosept-2, Cutasept F, Chlorhexidine, Miramistin, and Hydrogen Peroxide) was evaluated by measuring the size of bacterial growth inhibition zone on agar plates. RESULTS: Opportunistic bacteria of the species Bacillus cereus, Staphylococcus aureus, S. epidermidis, and S. saprophyticus were the most commonly found species in skin microbiota of wrestlers before and after training sessions. Representatives of all these species mostly had a hemolytic activity. An alcohol-containing antiseptic Veltosept-2 showed the strongest inhibitory effect on the bacterial isolates of athletes' skin microbiota most frequently detected in this study. CONCLUSIONS: The general increase in the bacterial colonization of wrestlers' skin, as well as the presence of hemolytic forms of opportunistic bacteria in cutaneous microbiota, indicates dysbiotic changes and a decrease in the protective features of the host organism. Veltosept-2 application can reduce the incidence of skin infections in contact sports athletes with the highest efficiency.


Assuntos
Anti-Infecciosos Locais/farmacologia , Atletas , Higiene , Microbiota/efeitos dos fármacos , Pele/microbiologia , Esportes , Adolescente , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pele/efeitos dos fármacos , Luta Romana , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...