Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 6(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36522135

RESUMO

Microbial communities in the world ocean are affected strongly by oceanic circulation, creating characteristic marine biomes. The high connectivity of most of the ocean makes it difficult to disentangle selective retention of colonizing genotypes (with traits suited to biome specific conditions) from evolutionary selection, which would act on founder genotypes over time. The Arctic Ocean is exceptional with limited exchange with other oceans and ice covered since the last ice age. To test whether Arctic microalgal lineages evolved apart from algae in the global ocean, we sequenced four lineages of microalgae isolated from Arctic waters and sea ice. Here we show convergent evolution and highlight geographically limited HGT as an ecological adaptive force in the form of PFAM complements and horizontal acquisition of key adaptive genes. Notably, ice-binding proteins were acquired and horizontally transferred among Arctic strains. A comparison with Tara Oceans metagenomes and metatranscriptomes confirmed mostly Arctic distributions of these IBPs. The phylogeny of Arctic-specific genes indicated that these events were independent of bacterial-sourced HGTs in Antarctic Southern Ocean microalgae.


Assuntos
Transferência Genética Horizontal , Microalgas , Transferência Genética Horizontal/genética , Microalgas/genética , Regiões Árticas , Oceanos e Mares , Camada de Gelo , Bactérias
2.
Phytopathology ; 112(4): 907-916, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34579556

RESUMO

Shrub willows (Salix spp.) are emerging as a viable lignocellulosic, second-generation bioenergy crop with many growth characteristics favorable for marginal lands in New York State and surrounding areas. Willow rust, caused by members of the genus Melampsora, is the most limiting disease of shrub willow in this region and remains extremely understudied. In this study, genetic diversity, genetic structure, and pathogen clonality were examined in Melampsora americana over two growing seasons via genotyping-by-sequencing to identify single-nucleotide polymorphism markers. In conjunction with this project, a reference genome of rust isolate R15-033-03 was generated to aid in variant discovery. Sampling between years allowed regional and site-specific investigation into population dynamics, in the context of both wild and cultivated hosts within high-density plantings. This work revealed that this pathogen is largely panmictic over the sampled areas, with few sites showing moderate genetic differentiation. These data support the hypothesis of sexual recombination between growing seasons because no genotype persisted across the two years of sampling. Additionally, clonality was determined as a driver of pathogen populations within cultivated fields and single shrubs; however, there is also evidence of high genetic diversity of rust isolates in all settings. This work provides a framework for M. americana population structure in the Great Lakes region, providing crucial information that can aid in future resistance breeding efforts.


Assuntos
Basidiomycota , Salix , Basidiomycota/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Salix/genética
3.
IMA Fungus ; 12(1): 21, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34372938

RESUMO

Marine fungi remain poorly covered in global genome sequencing campaigns; the 1000 fungal genomes (1KFG) project attempts to shed light on the diversity, ecology and potential industrial use of overlooked and poorly resolved fungal taxa. This study characterizes the genomes of three marine fungi: Emericellopsis sp. TS7, wood-associated Amylocarpus encephaloides and algae-associated Calycina marina. These species were genome sequenced to study their genomic features, biosynthetic potential and phylogenetic placement using multilocus data. Amylocarpus encephaloides and C. marina were placed in the Helotiaceae and Pezizellaceae (Helotiales), respectively, based on a 15-gene phylogenetic analysis. These two genomes had fewer biosynthetic gene clusters (BGCs) and carbohydrate active enzymes (CAZymes) than Emericellopsis sp. TS7 isolate. Emericellopsis sp. TS7 (Hypocreales, Ascomycota) was isolated from the sponge Stelletta normani. A six-gene phylogenetic analysis placed the isolate in the marine Emericellopsis clade and morphological examination confirmed that the isolate represents a new species, which is described here as E. atlantica. Analysis of its CAZyme repertoire and a culturing experiment on three marine and one terrestrial substrates indicated that E. atlantica is a psychrotrophic generalist fungus that is able to degrade several types of marine biomass. FungiSMASH analysis revealed the presence of 35 BGCs including, eight non-ribosomal peptide synthases (NRPSs), six NRPS-like, six polyketide synthases, nine terpenes and six hybrid, mixed or other clusters. Of these BGCs, only five were homologous with characterized BGCs. The presence of unknown BGCs sets and large CAZyme repertoire set stage for further investigations of E. atlantica. The Pezizellaceae genome and the genome of the monotypic Amylocarpus genus represent the first published genomes of filamentous fungi that are restricted in their occurrence to the marine habitat and form thus a valuable resource for the community that can be used in studying ecological adaptions of fungi using comparative genomics.

4.
Curr Biol ; 31(17): 3905-3914.e6, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34245690

RESUMO

Nitrogen (N) fixation is a driving force for the formation of symbiotic associations between N2-fixing bacteria and eukaryotes.1 Limited examples of these associations are known in fungi, and none with sexual structures of non-lichenized species.2-6 The basidiomycete Guyanagaster necrorhizus is a sequestrate fungus endemic to the Guiana Shield.7 Like the root rot-causing species in its sister genera Armillaria and Desarmillaria, G. necrorhizus sporocarps fruit from roots of decaying trees (Figures 1A-1C),8 and genome sequencing is consistent with observations that G. necrorhizus is a white-rotting decomposer. This species also represents the first documentation of an arthropod-dispersed sequestrate fungus. Numerous species of distantly related wood-feeding termites, which scavenge for N-rich food, feed on the mature spore-bearing tissue, or gleba, of G. necrorhizus. During feeding, mature spores adhere to termites for subsequent dispersal.9 Using chemical assays, isotope analysis, and high-throughput sequencing, we show that the sporocarps harbor actively N2-fixing Enterobacteriaceae species and that the N content within fungal tissue increases with maturation. Untargeted proteomic profiling suggests that ATP generation in the gleba is accomplished via fermentation. The use of fermentation-an anaerobic process-indicates that the sporocarp environment is anoxic, likely an adaptation to protect the oxygen-sensitive nitrogenase enzyme. Sporocarps also have a thick outer covering, possibly to limit oxygen diffusion. The enriched N content within mature sporocarps may offer a dietary inducement for termites in exchange for spore dispersal. These results show that the flexible metabolic capacity of fungi may facilitate N2-fixing associations, as well as higher-level organismal associations.


Assuntos
Basidiomycota , Isópteros , Animais , Basidiomycota/genética , Isópteros/microbiologia , Nitrogênio , Fixação de Nitrogênio , Proteômica , Simbiose
5.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33468665

RESUMO

Polycomb Group (PcG) proteins are part of an epigenetic cell memory system that plays essential roles in multicellular development, stem cell biology, X chromosome inactivation, and cancer. In animals, plants, and many fungi, Polycomb Repressive Complex 2 (PRC2) catalyzes trimethylation of histone H3 lysine 27 (H3K27me3) to assemble transcriptionally repressed facultative heterochromatin. PRC2 is structurally and functionally conserved in the model fungus Neurospora crassa, and recent work in this organism has generated insights into PRC2 control and function. To identify components of the facultative heterochromatin pathway, we performed a targeted screen of Neurospora deletion strains lacking individual ATP-dependent chromatin remodeling enzymes. We found the Neurospora homolog of IMITATION SWITCH (ISW) is critical for normal transcriptional repression, nucleosome organization, and establishment of typical histone methylation patterns in facultative heterochromatin domains. We also found that stable interaction between PRC2 and chromatin depends on ISW. A functional ISW ATPase domain is required for gene repression and normal H3K27 methylation. ISW homologs interact with accessory proteins to form multiple complexes with distinct functions. Using proteomics and molecular approaches, we identified three distinct Neurospora ISW-containing complexes. A triple mutant lacking three ISW accessory factors and disrupting multiple ISW complexes led to widespread up-regulation of PRC2 target genes and altered H3K27 methylation patterns, similar to an ISW-deficient strain. Taken together, our data show that ISW is a key component of the facultative heterochromatin pathway in Neurospora, and that distinct ISW complexes perform an apparently overlapping role to regulate chromatin structure and gene repression at PRC2 target domains.


Assuntos
Adenosina Trifosfatases/genética , Cromatina/genética , Neurospora crassa/genética , Complexo Repressor Polycomb 2/genética , Fatores de Transcrição/genética , Inativação Gênica , Heterocromatina/genética , Histonas/genética , Metilação , Proteínas do Grupo Polycomb/genética , Processamento de Proteína Pós-Traducional/genética
6.
Genome Biol ; 21(1): 259, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33023654

RESUMO

BACKGROUND: Plants can transmit somatic mutations and epimutations to offspring, which in turn can affect fitness. Knowledge of the rate at which these variations arise is necessary to understand how plant development contributes to local adaption in an ecoevolutionary context, particularly in long-lived perennials. RESULTS: Here, we generate a new high-quality reference genome from the oldest branch of a wild Populus trichocarpa tree with two dominant stems which have been evolving independently for 330 years. By sampling multiple, age-estimated branches of this tree, we use a multi-omics approach to quantify age-related somatic changes at the genetic, epigenetic, and transcriptional level. We show that the per-year somatic mutation and epimutation rates are lower than in annuals and that transcriptional variation is mainly independent of age divergence and cytosine methylation. Furthermore, a detailed analysis of the somatic epimutation spectrum indicates that transgenerationally heritable epimutations originate mainly from DNA methylation maintenance errors during mitotic rather than during meiotic cell divisions. CONCLUSION: Taken together, our study provides unprecedented insights into the origin of nucleotide and functional variation in a long-lived perennial plant.


Assuntos
Genoma de Planta , Taxa de Mutação , Populus/genética , Fatores Etários , Metilação de DNA , Epigênese Genética , Expressão Gênica , Anotação de Sequência Molecular
7.
Environ Microbiome ; 15(1): 2, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33902723

RESUMO

BACKGROUND: Currently, much is unknown about the taxonomic diversity and the mechanisms of methane metabolism in the Florida Everglades ecosystem. The Loxahatchee National Wildlife Refuge is a section of the Florida Everglades that is almost entirely unstudied in regard to taxonomic profiling. This short report analyzes the metagenome of soil samples from this Refuge to investigate the predominant taxa, as well as the abundance of genes involved in environmentally significant metabolic pathways related to methane production (nitrogen fixation and dissimilatory sulfite reduction). METHODS: Shotgun metagenomic sequencing using the Illumina platform was performed on 17 soil samples from four different sites within the Loxahatchee National Wildlife Refuge, and underwent quality control, assembly, and annotation. The soil from each sample was tested for water content and concentrations of organic carbon and nitrogen. RESULTS: The three most common phyla of bacteria for every site were Actinobacteria, Acidobacteria, and Proteobacteria; however, there was variation in relative phylum composition. The most common phylum of Archaea was Euryarchaeota for all sites. Alpha and beta diversity analyses indicated significant congruity in taxonomic diversity in most samples from Sites 1, 3, and 4 and negligible congruity between Site 2 and the other sites. Shotgun metagenomic sequencing revealed the presence of biogeochemical biomarkers of particular interest (e.g., mrcA, nifH, and dsrB) within the samples. The normalized abundances of mcrA, nifH, and dsrB exhibited a positive correlation with nitrogen concentration and water content, and a negative correlation with organic carbon concentration. CONCLUSION: This Everglades soil metagenomic study allowed examination of wetlands biological processes and showed expected correlations between measured organic constituents and prokaryotic gene frequency. Additionally, the taxonomic profile generated gives a basis for the diversity of prokaryotic microbial life throughout the Everglades.

8.
Biotechnol Biofuels ; 12: 81, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31007715

RESUMO

BACKGROUND: Trichoderma reesei is one of the major producers of enzymes for the conversion of plant biomass to sustainable fuels and chemicals. Crude plant biomass can induce the production of CAZymes in T. reesei, but there is limited understanding of how the transcriptional response to crude plant biomass is regulated. In addition, it is unknown whether induction on untreated recalcitrant crude plant biomass (with a large diversity of inducers) can be sustained for longer. We investigated the transcriptomic response of T. reesei to the two industrial feedstocks, corn stover (CS) and soybean hulls (SBH), over time (4 h, 24 h and 48 h), and its regulatory basis using transcription factor deletion mutants (Δxyr1 and Δara1). We also investigated whether deletion of a xylulokinase gene (Δxki1) from the pentose catabolic pathway that converts potential inducers could lead to increased CAZyme gene expression. RESULTS: By analyzing the transcriptomic responses using clustering as well as differential and cumulative expression of plant biomass degrading CAZymes, we found that corn stover induced a broader range and higher expression of CAZymes in T. reesei, while SBH induced more pectinolytic and mannanolytic transcripts. XYR1 was the major TF regulating CS utilization, likely due to the significant amount of d-xylose in this substrate. In contrast, ARA1 had a stronger effect on SBH utilization, which correlates with a higher abundance of l-arabinose in SBH that activates ARA1. Blocking pentose catabolism by deletion of xki1 led to higher expression of CAZyme encoding genes on both substrates at later time points. Surprisingly, this was also observed for Δara1 at later time points. Many of these genes were XYR1 regulated, suggesting that inducers for this regulator accumulated over time on both substrates. CONCLUSION: Our data demonstrates the complexity of the regulatory system related to plant biomass degradation in T. reesei and the effect the feedstock composition has on this. Furthermore, this dataset provides leads to improve the efficiency of a T. reesei enzyme cocktail, such as by the choice of substrate or by deleting xki1 to obtain higher production of plant biomass degrading CAZymes.

9.
Biotechnol J ; 14(4): e1800185, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30221832

RESUMO

As a late colonizer of herbivore dung, Podospora anserina has evolved an enzymatic machinery to degrade the more recalcitrant fraction of plant biomass, suggesting a great potential for biotechnology applications. The authors investigated its transcriptome during growth on two industrial feedstocks, soybean hulls (SBH) and corn stover (CS). Initially, CS and SBH results in the expression of hemicellulolytic and amylolytic genes, respectively, while at later time points a more diverse gene set is induced, especially for SBH. Substrate adaptation is also observed for carbon catabolism. Overall, SBH resulted in a larger diversity of expressed genes, confirming previous proteomics studies. The results not only provide an in depth view on the transcriptomic adaptation of P. anserina to substrate composition, but also point out strategies to improve saccharification of plant biomass at the industrial level.


Assuntos
Amilases/química , Podospora/enzimologia , Polissacarídeos/química , Proteômica , Biomassa , Biotecnologia/métodos , Regulação Enzimológica da Expressão Gênica , Podospora/genética , Glycine max/química , Especificidade por Substrato , Transcriptoma/genética , Zea mays/química , Zea mays/enzimologia
10.
Appl Environ Microbiol ; 84(20)2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30097442

RESUMO

Fungi play a key role cycling nutrients in forest ecosystems, but the mechanisms remain uncertain. To clarify the enzymatic processes involved in wood decomposition, the metatranscriptomics and metaproteomics of extensively decayed lodgepole pine were examined by RNA sequencing (RNA-seq) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), respectively. Following de novo metatranscriptome assembly, 52,011 contigs were searched for functional domains and homology to database entries. Contigs similar to basidiomycete transcripts dominated, and many of these were most closely related to ligninolytic white rot fungi or cellulolytic brown rot fungi. A diverse array of carbohydrate-active enzymes (CAZymes) representing a total of 132 families or subfamilies were identified. Among these were 672 glycoside hydrolases, including highly expressed cellulases or hemicellulases. The CAZymes also included 162 predicted redox enzymes classified within auxiliary activity (AA) families. Eighteen of these were manganese peroxidases, which are key components of ligninolytic white rot fungi. The expression of other redox enzymes supported the working of hydroquinone reduction cycles capable of generating reactive hydroxyl radicals. These have been implicated as diffusible oxidants responsible for cellulose depolymerization by brown rot fungi. Thus, enzyme diversity and the coexistence of brown and white rot fungi suggest complex interactions of fungal species and degradative strategies during the decay of lodgepole pine.IMPORTANCE The deconstruction of recalcitrant woody substrates is a central component of carbon cycling and forest health. Laboratory investigations have contributed substantially toward understanding the mechanisms employed by model wood decay fungi, but few studies have examined the physiological processes in natural environments. Herein, we identify the functional genes present in field samples of extensively decayed lodgepole pine (Pinus contorta), a major species distributed throughout the North American Rocky Mountains. The classified transcripts and proteins revealed a diverse array of oxidative and hydrolytic enzymes involved in the degradation of lignocellulose. The evidence also strongly supports simultaneous attack by fungal species employing different enzymatic strategies.


Assuntos
Basidiomycota/enzimologia , Basidiomycota/genética , Lignina/metabolismo , Pinus/microbiologia , Celulases/genética , Perfilação da Expressão Gênica , Genoma Fúngico , Glicosídeo Hidrolases/genética , Hidrólise , Oxirredução , Proteômica , Madeira/microbiologia
11.
Front Microbiol ; 9: 276, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29551995

RESUMO

Corynespora cassiicola is an Ascomycetes fungus with a broad host range and diverse life styles. Mostly known as a necrotrophic plant pathogen, it has also been associated with rare cases of human infection. In the rubber tree, this fungus causes the Corynespora leaf fall (CLF) disease, which increasingly affects natural rubber production in Asia and Africa. It has also been found as an endophyte in South American rubber plantations where no CLF outbreak has yet occurred. The C. cassiicola species is genetically highly diverse, but no clear relationship has been evidenced between phylogenetic lineage and pathogenicity. Cassiicolin, a small glycosylated secreted protein effector, is thought to be involved in the necrotrophic interaction with the rubber tree but some virulent C. cassiicola isolates do not have a cassiicolin gene. This study set out to identify other putative effectors involved in CLF. The genome of a highly virulent C. cassiicola isolate from the rubber tree (CCP) was sequenced and assembled. In silico prediction revealed 2870 putative effectors, comprising CAZymes, lipases, peptidases, secreted proteins and enzymes associated with secondary metabolism. Comparison with the genomes of 44 other fungal species, focusing on effector content, revealed a striking proximity with phylogenetically unrelated species (Colletotrichum acutatum, Colletotrichum gloesporioides, Fusarium oxysporum, nectria hematococca, and Botrosphaeria dothidea) sharing life style plasticity and broad host range. Candidate effectors involved in the compatible interaction with the rubber tree were identified by transcriptomic analysis. Differentially expressed genes included 92 putative effectors, among which cassiicolin and two other secreted singleton proteins. Finally, the genomes of 35 C. cassiicola isolates representing the genetic diversity of the species were sequenced and assembled, and putative effectors identified. At the intraspecific level, effector-based classification was found to be highly consistent with the phylogenomic trees. Identification of lineage-specific effectors is a key step toward understanding C. cassiicola virulence and host specialization mechanisms.

13.
Stand Genomic Sci ; 2(2): 176-85, 2010 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-21304700

RESUMO

Spirosoma linguale Migula 1894 is the type species of the genus. S. linguale is a free-living and non-pathogenic organism, known for its peculiar ringlike and horseshoe-shaped cell morphology. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is only the third completed genome sequence of a member of the family Cytophagaceae. The 8,491,258 bp long genome with its eight plasmids, 7,069 protein-coding and 60 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...