Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 119(24): 242701, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29286739

RESUMO

We have performed a direct measurement of the ^{19}Ne(p,γ)^{20}Na reaction in inverse kinematics using a beam of radioactive ^{19}Ne. The key astrophysical resonance in the ^{19}Ne+p system has been definitely measured for the first time at E_{c.m.}=456_{-2}^{+5} keV with an associated strength of 17_{-5}^{+7} meV. The present results are in agreement with resonance strength upper limits set by previous direct measurements, as well as resonance energies inferred from precision (^{3}He, t) charge exchange reactions. However, both the energy and strength of the 456 keV resonance disagree with a recent indirect study of the ^{19}Ne(d, n)^{20}Na reaction. In particular, the new ^{19}Ne(p,γ)^{20}Na reaction rate is found to be factors of ∼8 and ∼5 lower than the most recent evaluation over the temperature range of oxygen-neon novae and astrophysical x-ray bursts, respectively. Nevertheless, we find that the ^{19}Ne(p,γ)^{20}Na reaction is likely to proceed fast enough to significantly reduce the flux of ^{19}F in nova ejecta and does not create a bottleneck in the breakout from the hot CNO cycles into the rp process.

2.
Phys Rev Lett ; 115(5): 052702, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26274415

RESUMO

26Al is an important radioisotope in astrophysics that provides evidence of ongoing nucleosynthesis in the Galaxy. The 23Na(α, p)26Mg reaction has been identified by a sensitivity study as being one of the most important reactions for the production of 26Al in the convective C/Ne burning shell of massive stars. Owing to large uncertainties in previous experimental data, model calculations are used for the reaction rate of 23Na(α, p)26Mg in this sensitivity study. Current experimental data suggest a reaction rate a factor of ∼40 higher than model calculations. However, a new measurement of this reaction cross section has been made in inverse kinematics in the energy range E(c.m.)=1.28-3.15 MeV at TRIUMF, and found to be in reasonable agreement with the model calculation. A new reaction rate is calculated and tight constraints on the uncertainty in the production of 26Al, due to this reaction, are determined.

3.
Phys Rev Lett ; 110(26): 262502, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23848867

RESUMO

The rate of the 18F(p,γ)19Ne reaction affects the final abundance of the γ-ray observable radioisotope 18F, produced in novae. However, no successful measurement of this reaction exists and the rate used is calculated from incomplete information on the contributing resonances. Of the two resonances thought to play a significant role, one has a radiative width estimated from the assumed analogue state in the mirror nucleus, 19F. The second does not have an analogue state assignment at all, resulting in an arbitrary radiative width being assumed. Here, we report the first successful direct measurement of the 18F(p,γ)^19Ne reaction. The strength of the 665 keV resonance (Ex=7.076 MeV) is found to be over an order of magnitude weaker than currently assumed in nova models. Reaction rate calculations show that this resonance therefore plays no significant role in the destruction of ^{18}F at any astrophysical energy.

4.
Phys Rev Lett ; 110(3): 032502, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23373915

RESUMO

The (18)F(p,α)(15)O reaction rate is crucial for constraining model predictions of the γ-ray observable radioisotope (18)F produced in novae. The determination of this rate is challenging due to particular features of the level scheme of the compound nucleus, (19)Ne, which result in interference effects potentially playing a significant role. The dominant uncertainty in this rate arises from interference between J(π)=3/2(+) states near the proton threshold (S(p)=6.411 MeV) and a broad J(π)=3/2(+) state at 665 keV above threshold. This unknown interference term results in up to a factor of 40 uncertainty in the astrophysical S-factor at nova temperatures. Here we report a new measurement of states in this energy region using the (19)F((3)He,t)(19)Ne reaction. In stark contrast to previous assumptions we find at least 3 resonances between the proton threshold and E(cm)=50 keV, all with different angular distributions. None of these are consistent with J(π)=3/2(+) angular distributions. We find that the main uncertainty now arises from the unknown proton width of the 48 keV resonance, not from possible interference effects. Hydrodynamic nova model calculations performed indicate that this unknown width affects (18)F production by at least a factor of two in the model considered.

5.
Phys Rev Lett ; 96(25): 252501, 2006 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-16907298

RESUMO

The strength of the Ec.m. = 184 keV resonance in the 26gAl(p, gamma)27 reaction has been measured in inverse kinematics using the DRAGON recoil separator at TRIUMF's ISAC facility. We measure a value of omega gamma = 35 +/- 7 microeV and a resonance energy of Ec.m. = 184 +/- 1 keV, consistent with p-wave proton capture into the 7652(3) keV state in 27Si, and discuss the implications of these values for 26GAl nucleosynthesis in typical oxygen-neon white-dwarf novae.

6.
Phys Rev Lett ; 90(16): 162501, 2003 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-12731972

RESUMO

The 21Na(p,gamma)22Mg reaction is expected to play an important role in the nucleosynthesis of 22Na in oxygen-neon novae. The decay of 22Na leads to the emission of a characteristic 1.275 MeV gamma-ray line. This report provides the first direct measurement of the rate of this reaction using a radioactive 21Na beam, and discusses its astrophysical implications. The energy of the important state was measured to be E(c.m.)=205.7+/-0.5 keV with a resonance strength omegagamma=1.03+/-0.16(stat)+/-0.14(sys) meV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...