Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Respir Res ; 24(1): 38, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36726148

RESUMO

BACKGROUND: The association between genetic variants on the X chromosome to risk of COPD has not been fully explored. We hypothesize that the X chromosome harbors variants important in determining risk of COPD related phenotypes and may drive sex differences in COPD manifestations. METHODS: Using X chromosome data from three COPD-enriched cohorts of adult smokers, we performed X chromosome specific quality control, imputation, and testing for association with COPD case-control status, lung function, and quantitative emphysema. Analyses were performed among all subjects, then stratified by sex, and subsequently combined in meta-analyses. RESULTS: Among 10,193 subjects of non-Hispanic white or European ancestry, a variant near TMSB4X, rs5979771, reached genome-wide significance for association with lung function measured by FEV1/FVC ([Formula: see text] 0.020, SE 0.004, p 4.97 × 10-08), with suggestive evidence of association with FEV1 ([Formula: see text] 0.092, SE 0.018, p 3.40 × 10-07). Sex-stratified analyses revealed X chromosome variants that were differentially trending in one sex, with significantly different effect sizes or directions. CONCLUSIONS: This investigation identified loci influencing lung function, COPD, and emphysema in a comprehensive genetic association meta-analysis of X chromosome genetic markers from multiple COPD-related datasets. Sex differences play an important role in the pathobiology of complex lung disease, including X chromosome variants that demonstrate differential effects by sex and variants that may be relevant through escape from X chromosome inactivation. Comprehensive interrogation of the X chromosome to better understand genetic control of COPD and lung function is important to further understanding of disease pathology. Trial registration Genetic Epidemiology of COPD Study (COPDGene) is registered at ClinicalTrials.gov, NCT00608764 (Active since January 28, 2008). Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints Study (ECLIPSE), GlaxoSmithKline study code SCO104960, is registered at ClinicalTrials.gov, NCT00292552 (Active since February 16, 2006). Genetics of COPD in Norway Study (GenKOLS) holds GlaxoSmithKline study code RES11080, Genetics of Chronic Obstructive Lung Disease.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Feminino , Masculino , Humanos , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/genética , Fenótipo , Cromossomo X
2.
Mol Psychiatry ; 27(4): 1963-1969, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246634

RESUMO

Alzheimer's disease (AD) is a genetically complex disease for which nearly 40 loci have now been identified via genome-wide association studies (GWAS). We attempted to identify groups of rare variants (alternate allele frequency <0.01) associated with AD in a region-based, whole-genome sequencing (WGS) association study (rvGWAS) of two independent AD family datasets (NIMH/NIA; 2247 individuals; 605 families). Employing a sliding window approach across the genome, we identified several regions that achieved association p values <10-6, using the burden test or the SKAT statistic. The genomic region around the dystobrevin beta (DTNB) gene was identified with the burden and SKAT test and replicated in case/control samples from the ADSP study reaching genome-wide significance after meta-analysis (pmeta = 4.74 × 10-8). SKAT analysis also revealed region-based association around the Discs large homolog 2 (DLG2) gene and replicated in case/control samples from the ADSP study (pmeta = 1 × 10-6). In conclusion, in a region-based rvGWAS of AD we identified two novel AD genes, DLG2 and DTNB, based on association with rare variants.


Assuntos
Doença de Alzheimer , Proteínas Associadas à Distrofina/genética , Neuropeptídeos/genética , Doença de Alzheimer/genética , Ácido Ditionitrobenzoico , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Genômica , Guanilato Quinases/genética , Humanos , Polimorfismo de Nucleotídeo Único/genética , Proteínas Supressoras de Tumor/genética , Sequenciamento Completo do Genoma
3.
Genet Epidemiol ; 45(7): 685-693, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34159627

RESUMO

SARS-CoV-2 mortality has been extensively studied in relation to host susceptibility. How sequence variations in the SARS-CoV-2 genome affect pathogenicity is poorly understood. Starting in October 2020, using the methodology of genome-wide association studies (GWAS), we looked at the association between whole-genome sequencing (WGS) data of the virus and COVID-19 mortality as a potential method of early identification of highly pathogenic strains to target for containment. Although continuously updating our analysis, in December 2020, we analyzed 7548 single-stranded SARS-CoV-2 genomes of COVID-19 patients in the GISAID database and associated variants with mortality using a logistic regression. In total, evaluating 29,891 sequenced loci of the viral genome for association with patient/host mortality, two loci, at 12,053 and 25,088 bp, achieved genome-wide significance (p values of 4.09e-09 and 4.41e-23, respectively), though only 25,088 bp remained significant in follow-up analyses. Our association findings were exclusively driven by the samples that were submitted from Brazil (p value of 4.90e-13 for 25,088 bp). The mutation frequency of 25,088 bp in the Brazilian samples on GISAID has rapidly increased from about 0.4 in October/December 2020 to 0.77 in March 2021. Although GWAS methodology is suitable for samples in which mutation frequencies varies between geographical regions, it cannot account for mutation frequencies that change rapidly overtime, rendering a GWAS follow-up analysis of the GISAID samples that have been submitted after December 2020 as invalid. The locus at 25,088 bp is located in the P.1 strain, which later (April 2021) became one of the distinguishing loci (precisely, substitution V1176F) of the Brazilian strain as defined by the Centers for Disease Control. Specifically, the mutations at 25,088 bp occur in the S2 subunit of the SARS-CoV-2 spike protein, which plays a key role in viral entry of target host cells. Since the mutations alter amino acid coding sequences, they potentially imposing structural changes that could enhance viral infectivity and symptom severity. Our analysis suggests that GWAS methodology can provide suitable analysis tools for the real-time detection of new more transmissible and pathogenic viral strains in databases such as GISAID, though new approaches are needed to accommodate rapidly changing mutation frequencies over time, in the presence of simultaneously changing case/control ratios. Improvements of the associated metadata/patient information in terms of quality and availability will also be important to fully utilize the potential of GWAS methodology in this field.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Brasil , Estudo de Associação Genômica Ampla , Humanos , Mutação , Filogenia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética
4.
Bioinformatics ; 36(22-23): 5432-5438, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33367522

RESUMO

MOTIVATION: Analysis of rare variants in family-based studies remains a challenge. Transmission-based approaches provide robustness against population stratification, but the evaluation of the significance of test statistics based on asymptotic theory can be imprecise. Also, power will depend heavily on the choice of the test statistic and on the underlying genetic architecture of the locus, which will be generally unknown. RESULTS: In our proposed framework, we utilize the FBAT haplotype algorithm to obtain the conditional offspring genotype distribution under the null hypothesis given the sufficient statistic. Based on this conditional offspring genotype distribution, the significance of virtually any association test statistic can be evaluated based on simulations or exact computations, without the need for asymptotic approximations. Besides standard linear burden-type statistics, this enables our approach to also evaluate other test statistics such as variance components statistics, higher criticism approaches, and maximum-single-variant-statistics, where asymptotic theory might be involved or does not provide accurate approximations for rare variant data. Based on these P-values, combined test statistics such as the aggregated Cauchy association test (ACAT) can also be utilized. In simulation studies, we show that our framework outperforms existing approaches for family-based studies in several scenarios. We also applied our methodology to a TOPMed whole-genome sequencing dataset with 897 asthmatic trios from Costa Rica. AVAILABILITY AND IMPLEMENTATION: FBAT software is available at https://sites.google.com/view/fbatwebpage. Simulation code is available at https://github.com/julianhecker/FBAT_rare_variant_test_simulations. Whole-genome sequencing data for 'NHLBI TOPMed: The Genetic Epidemiology of Asthma in Costa Rica' is available at https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000988.v4.p1. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

5.
Genet Epidemiol ; 44(7): 785-794, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32681690

RESUMO

Noncoding DNA contains gene regulatory elements that alter gene expression, and the function of these elements can be modified by genetic variation. Massively parallel reporter assays (MPRA) enable high-throughput identification and characterization of functional genetic variants, but the statistical methods to identify allelic effects in MPRA data have not been fully developed. In this study, we demonstrate how the baseline allelic imbalance in MPRA libraries can produce biased results, and we propose a novel, nonparametric, adaptive testing method that is robust to this bias. We compare the performance of this method with other commonly used methods, and we demonstrate that our novel adaptive method controls Type I error in a wide range of scenarios while maintaining excellent power. We have implemented these tests along with routines for simulating MPRA data in the Analysis Toolset for MPRA (@MPRA), an R package for the design and analyses of MPRA experiments. It is publicly available at http://github.com/redaq/atMPRA.


Assuntos
DNA/genética , Expressão Gênica/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA não Traduzido/genética , Sequências Reguladoras de Ácido Nucleico/genética , Alelos , Variação Genética/genética , Humanos , Projetos de Pesquisa , Software
6.
Sci Rep ; 10(1): 5029, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32193444

RESUMO

With the advent of whole genome-sequencing (WGS) studies, family-based designs enable sex-specific analysis approaches that can be applied to only affected individuals; tests using family-based designs are attractive because they are completely robust against the effects of population substructure. These advantages make family-based association tests (FBATs) that use siblings as well as parents especially suited for the analysis of late-onset diseases such as Alzheimer's Disease (AD). However, the application of FBATs to assess sex-specific effects can require additional filtering steps, as sensitivity to sequencing errors is amplified in this type of analysis. Here, we illustrate the implementation of robust analysis approaches and additional filtering steps that can minimize the chances of false positive-findings due to sex-specific sequencing errors. We apply this approach to two family-based AD datasets and identify four novel loci (GRID1, RIOK3, MCPH1, ZBTB7C) showing sex-specific association with AD risk. Following stringent quality control filtering, the strongest candidate is ZBTB7C (Pinter = 1.83 × 10-7), in which the minor allele of rs1944572 confers increased risk for AD in females and protection in males. ZBTB7C encodes the Zinc Finger and BTB Domain Containing 7C, a transcriptional repressor of membrane metalloproteases (MMP). Members of this MMP family were implicated in AD neuropathology.


Assuntos
Doença de Alzheimer/genética , Análise de Dados , Bases de Dados Genéticas , Família , Estudos de Associação Genética , Loci Gênicos/genética , Estudo de Associação Genômica Ampla , Peptídeos e Proteínas de Sinalização Intracelular/genética , Sequenciamento Completo do Genoma , Alelos , Domínio BTB-POZ/genética , Feminino , Humanos , Masculino , Metaloproteases/genética , Metaloproteases/metabolismo , Risco , Fatores Sexuais , Dedos de Zinco/genética
7.
Nat Neurosci ; 23(2): 185-193, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31932770

RESUMO

Protein-coding de novo mutations (DNMs) are significant risk factors in many neurodevelopmental disorders, whereas schizophrenia (SCZ) risk associated with DNMs has thus far been shown to be modest. We analyzed DNMs from 1,695 SCZ-affected trios and 1,077 published SCZ-affected trios to better understand the contribution to SCZ risk. Among 2,772 SCZ probands, exome-wide DNM burden remained modest. Gene set analyses revealed that SCZ DNMs were significantly concentrated in genes that were highly expressed in the brain, that were under strong evolutionary constraint and/or overlapped with genes identified in other neurodevelopmental disorders. No single gene surpassed exome-wide significance; however, 16 genes were recurrently hit by protein-truncating DNMs, corresponding to a 3.15-fold higher rate than the mutation model expectation (permuted 95% confidence interval: 1-10 genes; permuted P = 3 × 10-5). Overall, DNMs explain a small fraction of SCZ risk, and larger samples are needed to identify individual risk genes, as coding variation across many genes confers risk for SCZ in the population.


Assuntos
Predisposição Genética para Doença/genética , Esquizofrenia/genética , Adulto , Criança , Família , Feminino , Humanos , Masculino , Mutação , Pais , Sequenciamento do Exoma
8.
Genet Epidemiol ; 43(3): 300-317, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30609057

RESUMO

The transmission disequilibrium test (TDT) is the gold standard for testing the association between a genetic variant and disease in samples consisting of affected individuals and their parents. In practice, more complex pedigree structures, that is siblings with no parents, or three-generational pedigrees with possibly missing genotypes, are common. There are several generalizations of the TDT that are suitable for use with arbitrary pedigree structures. We consider three such frequently used generalizations, family-based association test, pedigree disequilibrium test, and generalized disequilibrium test, that have accompanying software and compare them regarding validity and power in the single variant setting. We use simulations to study the effects of population admixture, populations whose genotypes are not in Hardy-Weinberg equilibrium (HWE), different pedigree structures, and the presence of linkage. Whereas our results show that some TDT generalizations can have a substantially increased Type 1 error, these tests are often used in substantive research without caveats about the validity of their Type 1 error. For the association analysis of rare variants in sequencing studies, region-based extensions of the TDT generalizations, that rely on the postulated robustness of the single variant tests, have been proposed. We discuss the implications of our results for these region-based extensions.


Assuntos
Estudos de Associação Genética , Desequilíbrio de Ligação/genética , Simulação por Computador , Família , Feminino , Frequência do Gene/genética , Ligação Genética , Humanos , Masculino , Modelos Genéticos , Pais , Linhagem , Software
9.
Genet Epidemiol ; 42(1): 123-126, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29159827

RESUMO

For family-based association studies, Horvath et al. proposed an algorithm for the association analysis between haplotypes and arbitrary phenotypes when the phase of the haplotypes is unknown, that is, genotype data is given. Their approach to haplotype analysis maintains the original features of the TDT/FBAT-approach, that is, complete robustness against genetic confounding and misspecification of the phenotype. The algorithm has been implemented in the FBAT and PBAT software package and has been used in numerous substantive manuscripts. Here, we propose a simplification of the original algorithm that maintains the original approach but reduces the computational burden of the approach substantially and gives valuable insights regarding the conditional distribution. With the modified algorithm, the application to whole-genome sequencing (WGS) studies becomes feasible; for example, in sliding window approaches or spatial-clustering approaches. The reduction of the computational burden that our modification provides is especially dramatic when both parental genotypes are missing. For example, for eight variants and 441 nuclear families with mostly offspring-only families, in a WGS study at the APOE locus, the running time decreased from approximately 21 hr for the original algorithm to 0.11 sec after our modification.


Assuntos
Algoritmos , Haplótipos , Núcleo Familiar , Fenótipo , Apolipoproteínas E/genética , Análise por Conglomerados , Feminino , Humanos , Masculino , Modelos Genéticos , Fatores de Tempo , Sequenciamento Completo do Genoma
11.
Genet Epidemiol ; 41(4): 309-319, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28191685

RESUMO

Whole-exome sequencing using family data has identified rare coding variants in Mendelian diseases or complex diseases with Mendelian subtypes, using filters based on variant novelty, functionality, and segregation with the phenotype within families. However, formal statistical approaches are limited. We propose a gene-based segregation test (GESE) that quantifies the uncertainty of the filtering approach. It is constructed using the probability of segregation events under the null hypothesis of Mendelian transmission. This test takes into account different degrees of relatedness in families, the number of functional rare variants in the gene, and their minor allele frequencies in the corresponding population. In addition, a weighted version of this test allows incorporating additional subject phenotypes to improve statistical power. We show via simulations that the GESE and weighted GESE tests maintain appropriate type I error rate, and have greater power than several commonly used region-based methods. We apply our method to whole-exome sequencing data from 49 extended pedigrees with severe, early-onset chronic obstructive pulmonary disease (COPD) in the Boston Early-Onset COPD study (BEOCOPD) and identify several promising candidate genes. Our proposed methods show great potential for identifying rare coding variants of large effect and high penetrance for family-based sequencing data. The proposed tests are implemented in an R package that is available on CRAN (https://cran.r-project.org/web/packages/GESE/).


Assuntos
Variação Genética , Doença Pulmonar Obstrutiva Crônica/genética , Análise de Sequência de DNA/métodos , Idade de Início , Boston , Simulação por Computador , Bases de Dados Genéticas , Família , Genoma Humano , Humanos , Modelos Genéticos , Penetrância , Padrões de Referência
12.
Am J Respir Cell Mol Biol ; 56(3): 332-341, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27854507

RESUMO

Chronic obstructive pulmonary disease (COPD) is a complex disease with strong environmental and genetic influences and sexually dimorphic features. Although genetic risk factors for COPD have been identified, much of the heritability remains unexplained. Sex-based genetic association studies may uncover additional COPD genetic risk factors. We studied current and former smokers from COPD case-control cohorts (COPDGene non-Hispanic whites and African Americans, Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-Points, and Genetics of Chronic Obstructive Lung Disease). COPD was defined as post-bronchodilator forced expiratory volume in 1 second/forced vital capacity less than 0.70 and forced expiratory volume in 1 second percent predicted less than 80. Testing was performed across all cohorts and combined in a meta-analysis adjusted for age, pack-years, and genetic ancestry. We first performed genome-wide single-nucleotide polymorphism (SNP)-by-sex interaction testing on the outcome of COPD affection status. We performed sex-stratified association testing for SNPs with interaction P less than 10-6. We examined over 8 million SNPs in four populations, including 6,260 subjects with COPD (40.6% female) and 5,269 smoking control subjects (47.3% female). The SNP rs9615358 in the cadherin gene CELSR1 approached genome-wide significance for an interaction with sex (P = 1.24 × 10-7). In the sex-stratified meta-analysis, this SNP was associated with COPD among females (odds ratio, 1.37 [95% confidence interval, 1.25-1.49]; P = 3.32 × 10-7) but not males (odds ratio, 0.90 [95% confidence interval, 0.79-1.01]; P = 0.06). CELSR1 is involved in fetal lung development. In a human fetal lung tissue dataset, we observed greater CELSR1 expression in female compared with male samples. This SNP-by-sex genome-wide association analysis identified the fetal lung development gene, CELSR1, as a potential sex-specific risk factor for COPD. Identifying sex-specific genetic risk factors may reveal new insights into sexually dimorphic features of COPD.


Assuntos
Caderinas/genética , Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Doença Pulmonar Obstrutiva Crônica/genética , Idoso , Alelos , Demografia , Feminino , Regulação da Expressão Gênica , Humanos , Pulmão/metabolismo , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco
13.
Am J Respir Crit Care Med ; 195(6): 757-771, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-27669027

RESUMO

RATIONALE: Emphysema has considerable variability in the severity and distribution of parenchymal destruction throughout the lungs. Upper lobe-predominant emphysema has emerged as an important predictor of response to lung volume reduction surgery. Yet, aside from alpha-1 antitrypsin deficiency, the genetic determinants of emphysema distribution remain largely unknown. OBJECTIVES: To identify the genetic influences of emphysema distribution in non-alpha-1 antitrypsin-deficient smokers. METHODS: A total of 11,532 subjects with complete genotype and computed tomography densitometry data in the COPDGene (Genetic Epidemiology of Chronic Obstructive Pulmonary Disease [COPD]; non-Hispanic white and African American), ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints), and GenKOLS (Genetics of Chronic Obstructive Lung Disease) studies were analyzed. Two computed tomography scan emphysema distribution measures (difference between upper-third and lower-third emphysema; ratio of upper-third to lower-third emphysema) were tested for genetic associations in all study subjects. Separate analyses in each study population were followed by a fixed effect metaanalysis. Single-nucleotide polymorphism-, gene-, and pathway-based approaches were used. In silico functional evaluation was also performed. MEASUREMENTS AND MAIN RESULTS: We identified five loci associated with emphysema distribution at genome-wide significance. These loci included two previously reported associations with COPD susceptibility (4q31 near HHIP and 15q25 near CHRNA5) and three new associations near SOWAHB, TRAPPC9, and KIAA1462. Gene set analysis and in silico functional evaluation revealed pathways and cell types that may potentially contribute to the pathogenesis of emphysema distribution. CONCLUSIONS: This multicohort genome-wide association study identified new genomic loci associated with differential emphysematous destruction throughout the lungs. These findings may point to new biologic pathways on which to expand diagnostic and therapeutic approaches in chronic obstructive pulmonary disease. Clinical trial registered with www.clinicaltrials.gov (NCT 00608764).


Assuntos
Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Enfisema Pulmonar/genética , Estudos de Coortes , Feminino , Humanos , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Enfisema Pulmonar/diagnóstico por imagem , Enfisema Pulmonar/fisiopatologia , Fumar/fisiopatologia , Tomografia Computadorizada por Raios X
14.
Am J Respir Crit Care Med ; 194(1): 48-57, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-26771213

RESUMO

RATIONALE: Chronic obstructive pulmonary disease (COPD) susceptibility is in part related to genetic variants. Most genetic studies have been focused on genome-wide common variants without a specific focus on coding variants, but common and rare coding variants may also affect COPD susceptibility. OBJECTIVES: To identify coding variants associated with COPD. METHODS: We tested nonsynonymous, splice, and stop variants derived from the Illumina HumanExome array for association with COPD in five study populations enriched for COPD. We evaluated single variants with a minor allele frequency greater than 0.5% using logistic regression. Results were combined using a fixed effects meta-analysis. We replicated novel single-variant associations in three additional COPD cohorts. MEASUREMENTS AND MAIN RESULTS: We included 6,004 control subjects and 6,161 COPD cases across five cohorts for analysis. Our top result was rs16969968 (P = 1.7 × 10(-14)) in CHRNA5, a locus previously associated with COPD susceptibility and nicotine dependence. Additional top results were found in AGER, MMP3, and SERPINA1. A nonsynonymous variant, rs181206, in IL27 (P = 4.7 × 10(-6)) was just below the level of exome-wide significance but attained exome-wide significance (P = 5.7 × 10(-8)) when combined with results from other cohorts. Gene expression datasets revealed an association of rs181206 and the surrounding locus with expression of multiple genes; several were differentially expressed in COPD lung tissue, including TUFM. CONCLUSIONS: In an exome array analysis of COPD, we identified nonsynonymous variants at previously described loci and a novel exome-wide significant variant in IL27. This variant is at a locus previously described in genome-wide associations with diabetes, inflammatory bowel disease, and obesity and appears to affect genes potentially related to COPD pathogenesis.


Assuntos
Exoma/genética , Predisposição Genética para Doença/genética , Interleucina-27/genética , Doença Pulmonar Obstrutiva Crônica/genética , Adulto , Idoso , Feminino , Frequência do Gene/genética , Humanos , Masculino , Pessoa de Meia-Idade
15.
Int J Epidemiol ; 44(6): 1889-99, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26675752

RESUMO

BACKGROUND: Early social experiences are believed to shape neurodevelopment, with potentially lifelong consequences. Yet minimal evidence exists regarding the role of the social environment on children's neural functioning, a core domain of neurodevelopment. METHODS: We analysed data from 36 443 participants in the United States Collaborative Perinatal Project, a socioeconomically diverse pregnancy cohort conducted between 1959 and 1974. Study outcomes included: physician (neurologist or paediatrician)-rated neurological abnormality neonatally and thereafter at 4 months and 1 and 7 years; indicators of neurological hard signs and soft signs; and indicators of autonomic nervous system function. RESULTS: Children born to socioeconomically disadvantaged parents were more likely to exhibit neurological abnormalities at 4 months [odds ratio (OR) = 1.20; 95% confidence interval (CI) = 1.06, 1.37], 1 year (OR = 1.35; CI = 1.17, 1.56), and 7 years (OR = 1.67; CI = 1.48, 1.89), and more likely to exhibit neurological hard signs (OR = 1.39; CI = 1.10, 1.76), soft signs (OR = 1.26; CI = 1.09, 1.45) and autonomic nervous system dysfunctions at 7 years. Pregnancy and delivery complications, themselves associated with socioeconomic disadvantage, did not account for the higher risks of neurological abnormalities among disadvantaged children. CONCLUSIONS: Parental socioeconomic disadvantage was, independently from pregnancy and delivery complications, associated with abnormal child neural development during the first 7 years of life. These findings reinforce the importance of the early environment for neurodevelopment generally, and expand knowledge regarding the domains of neurodevelopment affected by environmental conditions. Further work is needed to determine the mechanisms linking socioeconomic disadvantage with children's neural functioning, the timing of such mechanisms and their potential reversibility.


Assuntos
Doenças do Sistema Nervoso Autônomo/epidemiologia , Desenvolvimento Infantil , Doenças do Sistema Nervoso/epidemiologia , Exame Neurológico , Classe Social , Doenças do Sistema Nervoso Autônomo/fisiopatologia , Traumatismos do Nascimento/epidemiologia , Criança , Estudos de Coortes , Parto Obstétrico/estatística & dados numéricos , Feminino , Marcha/fisiologia , Humanos , Lactente , Recém-Nascido , Modelos Logísticos , Masculino , Atividade Motora/fisiologia , Tono Muscular/fisiologia , Doenças do Sistema Nervoso/fisiopatologia , Gravidez , Complicações na Gravidez/epidemiologia , Nascimento Prematuro/epidemiologia , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Fatores de Risco , Estados Unidos/epidemiologia , Sistema Vasomotor/fisiopatologia
16.
BMC Genet ; 16: 138, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26634245

RESUMO

BACKGROUND: Pulmonary function decline is a major contributor to morbidity and mortality among smokers. Post bronchodilator FEV1 and FEV1/FVC ratio are considered the standard assessment of airflow obstruction. We performed a genome-wide association study (GWAS) in 9919 current and former smokers in the COPDGene study (6659 non-Hispanic Whites [NHW] and 3260 African Americans [AA]) to identify associations with spirometric measures (post-bronchodilator FEV1 and FEV1/FVC). We also conducted meta-analysis of FEV1 and FEV1/FVC GWAS in the COPDGene, ECLIPSE, and GenKOLS cohorts (total n = 13,532). RESULTS: Among NHW in the COPDGene cohort, both measures of pulmonary function were significantly associated with SNPs at the 15q25 locus [containing CHRNA3/5, AGPHD1, IREB2, CHRNB4] (lowest p-value = 2.17 × 10(-11)), and FEV1/FVC was associated with a genomic region on chromosome 4 [upstream of HHIP] (lowest p-value = 5.94 × 10(-10)); both regions have been previously associated with COPD. For the meta-analysis, in addition to confirming associations to the regions near CHRNA3/5 and HHIP, genome-wide significant associations were identified for FEV1 on chromosome 1 [TGFB2] (p-value = 8.99 × 10(-9)), 9 [DBH] (p-value = 9.69 × 10(-9)) and 19 [CYP2A6/7] (p-value = 3.49 × 10(-8)) and for FEV1/FVC on chromosome 1 [TGFB2] (p-value = 8.99 × 10(-9)), 4 [FAM13A] (p-value = 3.88 × 10(-12)), 11 [MMP3/12] (p-value = 3.29 × 10(-10)) and 14 [RIN3] (p-value = 5.64 × 10(-9)). CONCLUSIONS: In a large genome-wide association study of lung function in smokers, we found genome-wide significant associations at several previously described loci with lung function or COPD. We additionally identified a novel genome-wide significant locus with FEV1 on chromosome 9 [DBH] in a meta-analysis of three study populations.


Assuntos
População Negra/genética , Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Fumar/genética , População Branca/genética , Broncodilatadores/farmacologia , Cromossomos Humanos Par 15/genética , Cromossomos Humanos Par 4/genética , Estudos de Coortes , Feminino , Volume Expiratório Forçado , Genoma Humano , Humanos , Masculino , Metanálise como Assunto , Pessoa de Meia-Idade , Fatores de Risco , Espirometria
17.
Contemp Clin Trials ; 45(Pt A): 139-45, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26343745

RESUMO

In this paper, we revisit a 1986 article we published in this Journal, Meta-Analysis in Clinical Trials, where we introduced a random-effects model to summarize the evidence about treatment efficacy from a number of related clinical trials. Because of its simplicity and ease of implementation, our approach has been widely used (with more than 12,000 citations to date) and the "DerSimonian and Laird method" is now often referred to as the 'standard approach' or a 'popular' method for meta-analysis in medical and clinical research. The method is especially useful for providing an overall effect estimate and for characterizing the heterogeneity of effects across a series of studies. Here, we review the background that led to the original 1986 article, briefly describe the random-effects approach for meta-analysis, explore its use in various settings and trends over time and recommend a refinement to the method using a robust variance estimator for testing overall effect. We conclude with a discussion of repurposing the method for Big Data meta-analysis and Genome Wide Association Studies for studying the importance of genetic variants in complex diseases.


Assuntos
Ensaios Clínicos como Assunto/métodos , Metanálise como Assunto , Modelos Estatísticos , Projetos de Pesquisa , Estudo de Associação Genômica Ampla/métodos , Humanos
18.
Hum Hered ; 79(2): 93-104, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26111731

RESUMO

Many correlated disease variables are analyzed jointly in genetic studies in the hope of increasing power to detect causal genetic variants. One approach involves assessing the relationship between each phenotype and each SNP individually and using a Bonferroni correction for the effective number of tests conducted. Alternatively, one can apply a multivariate regression or a dimension reduction technique, such as principal component analysis, and test for the association with the principal components of the phenotypes rather than the individual phenotypes. Inspired by the previous approaches of combining phenotypes to maximize heritability at individual SNPs, in this paper, we propose to construct a maximally heritable (MaxH) phenotype by taking advantage of the estimated total heritability and co-heritability. The heritability and co-heritability only need to be estimated once; therefore, our method is applicable to genome-wide scans. The MaxH phenotype is a linear combination of the individual phenotypes with increased heritability and power over the phenotypes being combined. Simulations show that the heritability and power achieved agree well with the theory for large samples and two phenotypes. We compare our approach with commonly used methods and assess both the heritability and the power of the MaxH phenotype. Moreover, we provide suggestions for how to choose the phenotypes for combination. An application of our approach to a GWAS on chronic obstructive pulmonary disease shows its practical relevance.


Assuntos
Modelos Genéticos , Fenótipo , Estudo de Associação Genômica Ampla , Humanos , Doença Pulmonar Obstrutiva Crônica/genética
19.
Am J Respir Crit Care Med ; 192(5): 559-69, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26030696

RESUMO

RATIONALE: Chronic obstructive pulmonary disease (COPD) is defined by the presence of airflow limitation on spirometry, yet subjects with COPD can have marked differences in computed tomography imaging. These differences may be driven by genetic factors. We hypothesized that a genome-wide association study (GWAS) of quantitative imaging would identify loci not previously identified in analyses of COPD or spirometry. In addition, we sought to determine whether previously described genome-wide significant COPD and spirometric loci were associated with emphysema or airway phenotypes. OBJECTIVES: To identify genetic determinants of quantitative imaging phenotypes. METHODS: We performed a GWAS on two quantitative emphysema and two quantitative airway imaging phenotypes in the COPDGene (non-Hispanic white and African American), ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints), NETT (National Emphysema Treatment Trial), and GenKOLS (Genetics of COPD, Norway) studies and on percentage gas trapping in COPDGene. We also examined specific loci reported as genome-wide significant for spirometric phenotypes related to airflow limitation or COPD. MEASUREMENTS AND MAIN RESULTS: The total sample size across all cohorts was 12,031, of whom 9,338 were from COPDGene. We identified five loci associated with emphysema-related phenotypes, one with airway-related phenotypes, and two with gas trapping. These loci included previously reported associations, including the HHIP, 15q25, and AGER loci, as well as novel associations near SERPINA10 and DLC1. All previously reported COPD and a significant number of spirometric GWAS loci were at least nominally (P < 0.05) associated with either emphysema or airway phenotypes. CONCLUSIONS: Genome-wide analysis may identify novel risk factors for quantitative imaging characteristics in COPD and also identify imaging features associated with previously identified lung function loci.


Assuntos
Pulmão/diagnóstico por imagem , Enfisema Pulmonar/genética , Idoso , Proteínas de Transporte/genética , Estudos de Coortes , Feminino , Proteínas Ativadoras de GTPase/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Processamento de Imagem Assistida por Computador , Proteína 2 Reguladora do Ferro/genética , Estudos Longitudinais , Masculino , Glicoproteínas de Membrana/genética , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Fenótipo , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/genética , Enfisema Pulmonar/diagnóstico por imagem , Receptor para Produtos Finais de Glicação Avançada/genética , Receptores Nicotínicos/genética , Serpinas/genética , Tomografia Computadorizada por Raios X , Proteínas Supressoras de Tumor/genética
20.
BMC Proc ; 8(Suppl 1 Genetic Analysis Workshop 18Vanessa Olmo): S33, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25519381

RESUMO

The revolution in next-generation sequencing has made obtaining both common and rare high-quality sequence variants across the entire genome feasible. Because researchers are now faced with the analytical challenges of handling a massive amount of genetic variant information from sequencing studies, numerous methods have been developed to assess the impact of both common and rare variants on disease traits. In this report, whole genome sequencing data from Genetic Analysis Workshop 18 was used to compare the power of several methods, considering both family-based and population-based designs, to detect association with variants in the MAP4 gene region and on chromosome 3 with blood pressure. To prioritize variants across the genome for testing, variants were first functionally assessed using prediction algorithms and expression quantitative trait loci (eQTLs) data. Four set-based tests in the family-based association tests (FBAT) framework--FBAT-v, FBAT-lmm, FBAT-m, and FBAT-l--were used to analyze 20 pedigrees, and 2 variance component tests, sequence kernel association test (SKAT) and genome-wide complex trait analysis (GCTA), were used with 142 unrelated individuals in the sample. Both set-based and variance-component-based tests had high power and an adequate type I error rate. Of the various FBATs, FBAT-l demonstrated superior performance, indicating the potential for it to be used in rare-variant analysis. The updated FBAT package is available at: http://www.hsph.harvard.edu/fbat/.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...