Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Res Bull ; 198: 15-26, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37031792

RESUMO

Mild traumatic brain injury (mTBI) and post-traumatic stress disorder (PTSD) have emerged as the signature injuries of the U.S. veterans who served in Iraq and Afghanistan, and frequently co-occur in both military and civilian populations. To better understand how fear learning and underlying neural systems might be altered after mTBI, we examined the acquisition of cued fear conditioning and its extinction along with brain morphology and dendritic plasticity in a mouse model of mTBI. To induce mTBI in adult male C57BL/6J mice, a lateral fluid percussive injury (LFP 1.7) was produced using a fluid pulse of 1.7 atmosphere force to the right parietal lobe. Behavior in LFP 1.7 mice was compared to behavior in mice from two separate control groups: mice subjected to craniotomy without LFP injury (Sham) and mice that did not undergo surgery (Unoperated). Following behavioral testing, neural endpoints (dendritic structural plasticity and neuronal volume) were assessed in the basolateral nucleus of the amygdala (BLA), which plays a critical sensory role in fear learning, and medial prefrontal cortex (mPFC), responsible for executive functions and inhibition of fear behaviors. No gross motor abnormalities or increased anxiety-like behaviors were observed in LFP or Sham mice after surgery compared to Unoperated mice. We found that all mice acquired fear behavior, assessed as conditioned freezing to auditory cue in a single session of 6 trials, and acquisition was similar across treatment groups. Using a linear mixed effects analysis, we showed that fear behavior decreased overall over 6 days of extinction training with no effect of treatment group across extinction days. However, a significant interaction was demonstrated between the treatment groups during within-session freezing behavior (5 trials per day) during extinction training. Specifically, freezing behavior increased across within-session extinction trials in LFP 1.7 mice, whereas freezing behavior in control groups did not change on extinction test days, reflecting a dissociation between within-trial and between-trial fear extinction. Additionally, LFP mice demonstrated bilateral increases in dendritic spine density in the BLA and decreases in dendritic complexity in the PFC. The translational implications are that individuals with TBI undergoing fear extinction therapy may demonstrate within-session aberrant learning that could be targeted for more effective treatment interventions.


Assuntos
Concussão Encefálica , Camundongos , Masculino , Animais , Extinção Psicológica , Medo/fisiologia , Camundongos Endogâmicos C57BL , Tonsila do Cerebelo/fisiologia , Córtex Pré-Frontal
2.
Brain Res Bull ; 186: 106-122, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35618150

RESUMO

Post-traumatic stress disorder (PTSD) is a trauma-related condition that produces distressing fear memory intrusions, avoidance behaviors, hyperarousal/startle, stress responses and insomnia. This review focuses on the importance of the orexin neural system as a novel mechanism related to the pathophysiology of PTSD. Orexinergic neurons originate in the lateral hypothalamus and project widely to key neurotransmitter systems, autonomic neurons, the hypothalamic-pituitary-adrenal (HPA) axis, and fear-related neural circuits. After trauma or stress, the basolateral amygdala (BLA) transmits sensory information to the central nucleus of the amygdala (CeA) and in turn to the hypothalamus and other subcortical and brainstem regions to promote fear and threat behaviors. Orexin receptors have a prominent role in this circuit as fear conditioned orexin receptor knockout mice show decreased fear expression while dual orexin receptor antagonists (DORAs) inhibit fear acquisition and expression. Orexin activation of an infralimbic-amygdala circuit impedes fear extinction while DORA treatments enhance it. Increased orexin signaling to the amygdalo-cortical-hippocampal circuit promotes avoidance behaviors. Orexin has an important role in activating sympathetic nervous system (SNS) activity and HPA axis stress responses. Blockade of orexin receptors reduces fear-conditioned startle responses. In PTSD models, individuals demonstrate sleep disturbances such as increased sleep latency and more transitions to wakefulness. Increased orexin activity impairs sleep by promoting wakefulness and reducing total sleep time while DORA treatments enhance sleep onset and maintenance. The orexinergic neural system provides important mechanisms for understanding multiple PTSD behaviors and provides new medication targets to treat this often persistent and debilitating illness.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Animais , Nível de Alerta , Extinção Psicológica/fisiologia , Medo/fisiologia , Sistema Hipotálamo-Hipofisário/metabolismo , Camundongos , Receptores de Orexina/metabolismo , Orexinas/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Sono/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...