Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 48(9): 2480-2483, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37126304

RESUMO

The effect of realistic atmospheric conditions on mid-IR (λ = 3.9 µm) and long-wave-IR (λ = 10 µm) laser-induced avalanche breakdown for the remote detection of radioactive material is examined experimentally and with propagation simulations. Our short-range in-lab mid-IR laser experiments show a correlation between increasing turbulence level and a reduced number of breakdown sites associated with a reduction in the portion of the focal volume above the breakdown threshold. Simulations of propagation through turbulence are in excellent agreement with these measurements and provide code validation. We then simulate propagation through realistic atmospheric turbulence over a long range (0.1-1 km) in the long-wave-IR regime (λ = 10 µm). The avalanche threshold focal volume is found to be robust even in the presence of strong turbulence, only dropping by ∼50% over a propagation length of ∼0.6 km. We also experimentally assess the impact of aerosols on avalanche-based detection, finding that, while background counts increase, a useful signal is extractable even at aerosol concentrations 105 times greater than what is typically observed in atmospheric conditions. Our results show promise for the long-range detection of radioactive sources under realistic atmospheric conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...