Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Cell Mol Med ; 28(7): e18243, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509740

RESUMO

Humans lacking heme oxygenase 1 (HMOX1) display growth retardation, haemolytic anaemia, and vulnerability to stress; however, cardiac function remains unclear. We aimed to explore the cardiac function of zebrafish lacking hmox1a at baseline and in response to stress. We generated zebrafish hmox1a mutants using CRISPR/Cas9 genome editing technology. Deletion of hmox1a increases cardiac output and further induces hypertrophy in adults. Adults lacking hmox1a develop myocardial interstitial fibrosis, restrain cardiomyocyte proliferation and downregulate renal haemoglobin and cardiac antioxidative genes. Larvae lacking hmox1a fail to respond to hypoxia, whereas adults are insensitive to isoproterenol stimulation in the heart, suggesting that hmox1a is necessary for cardiac response to stress. Haplodeficiency of hmox1a stimulates non-mitochondrial respiration and cardiac cell proliferation, increases cardiac output in larvae in response to hypoxia, and deteriorates cardiac function and structure in adults upon isoproterenol treatment. Intriguingly, haplodeficiency of hmox1a upregulates cardiac hmox1a and hmox1b in response to isoproterenol. Collectively, deletion of hmox1a results in cardiac remodelling and abrogates cardiac response to hypoxia and isoproterenol. Haplodeficiency of hmox1a aggravates cardiac response to the stress, which could be associated with the upregulation of hmox1a and hmox1b. Our data suggests that HMOX1 homeostasis is essential for maintaining cardiac function and promoting cardioprotective effects.


Assuntos
Cardiomiopatias , Heme Oxigenase (Desciclizante) , Animais , Humanos , Peixe-Zebra/genética , Isoproterenol/farmacologia , Heme Oxigenase-1/genética , Miocárdio , Hipóxia , Miócitos Cardíacos
2.
Eur J Clin Invest ; : e14186, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376079

RESUMO

BACKGROUND: Cardiogenic shock (CS) is a severe myocardial dysfunction secondary to various cardiac conditions including ST-segment elevation acute myocardial infarction (STEMI) and associated with a high risk of death. Little is known on epigenetic determinants in CS. Here, we investigated plasma miRNAs in relation to CS stratification in STEMI-patients. METHODS: STEMI-patients (n = 49), with (CS, n = 25) and without CS (non-CS, n = 24) fulfilling inclusion criteria were included from HSCSP-cohort (Derivation-cohort). CS-miRNAs were analysed by Affymetrix-microarray and RT-PCR. Results were validated in a second cohort of CS-patients (CardShock: n = 35) with similar inclusion/exclusion criteria as the derivation cohort. In silico analysis were performed to identify potential miRNA target genes. RESULTS: Of the 5-miRNA signature obtained from microarray analysis, miR-619-5p showed higher levels in CS than in Non-CS patients (p = .003) and discriminating power for CS by ROC (AUC: .752, p = .003). miR-619-5p directly associated with risk scores [GRACE, p = .001; CardShock, p < .001]. Furthermore, miR-619-5p showed discrimination power for death in CS. Thus, miRNA levels were significantly higher in patients with mortality outcome both in the Derivation HSCSP-cohort (p = .02; AUC: .78 ± .095) and the Validation CardShock-cohort (p = .017; AUC: .737 ± .086) By in silico analysis, miR-619-5p target genes and TNF-alpha were involved in the regulation of inflammation. miR-619-5p and TNF-alpha levels discriminated mortality outcome in CS-patients during 30-day follow-up (Validation-Cohort: ROC: .812, p = .002; HR: 9.99, p = .003). CONCLUSIONS: Up-regulation of miR-619-5p is found in the plasma of STEMI-patients with CS and mortality outcome. These findings highlight the specificity of epigenetic regulation of inflammation on the disease severity of MI.

3.
Crit Rev Clin Lab Sci ; 60(2): 141-152, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36325621

RESUMO

Circulating cell-free microRNAs (miRNAs) represent a major reservoir for biomarker discovery. Unfortunately, their implementation in clinical practice is limited due to a profound lack of reproducibility. The great technical variability linked to major pre-analytical and analytical caveats makes the interpretation of circulating cell-free miRNA data challenging and leads to inconsistent findings. Additional efforts directed to standardization are fundamental. Several well-established protocols are currently used by independent groups worldwide. Nonetheless, there are some specific aspects in specimen collection and processing, sample handling, miRNA quantification, and data analysis that should be considered to ensure reproducibility of results. Here, we have addressed this challenge using an alternative approach. We have highlighted and discussed common pitfalls that negatively impact the robustness of circulating miRNA quantification and their application for clinical decision-making. Furthermore, we provide a checklist usable by investigators to facilitate and ensure the control of the whole miRNA quantification and analytical process. We expect that these recommendations improve the reproducibility of findings, and ultimately, facilitate the incorporation of circulating miRNA profiles into clinical practice as the next generation of disease biomarkers.


Assuntos
MicroRNA Circulante , MicroRNAs , Humanos , Reprodutibilidade dos Testes , Biomarcadores , MicroRNAs/genética , Tomada de Decisão Clínica
4.
Basic Clin Pharmacol Toxicol ; 132(1): 21-32, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36220802

RESUMO

Uric acid has promoted renal fibrosis and inflammation in experimental studies, but some studies have shown nephroprotective effects due to alleviated oxidative stress. We studied the influence of experimental hyperuricaemia in surgically 5/6 nephrectomized rats. Three weeks after subtotal nephrectomy or sham operation, the rats were allocated to control diet or 2.0% oxonic acid (uricase inhibitor) diet for 9 weeks. Then blood, urine and tissue samples were taken, and renal morphology and oxidative stress were examined. Inflammation and fibrosis were evaluated using immunohistochemistry and real-time PCR (RT-PCR). Remnant kidney rats ingesting normal or oxonic acid diet presented with ~60% reduction of creatinine clearance and suppressed plasma renin activity. Oxonic acid diet increased plasma uric acid levels by >80 µmol/L. In remnant kidney rats, moderate hyperuricaemia decreased glomerulosclerosis, tubulointerstitial damage and kidney mast cell count, without influencing the fibrosis marker collagen I messenger RNA (mRNA) content. In both sham-operated and 5/6 nephrectomized rats, the mast cell product 11-epi-prostaglandin-F2α excretion to the urine and kidney tissue cyclooxygenase-2 (COX-2) levels were decreased. To conclude, hyperuricaemic remnant kidney rats displayed improved kidney morphology and reduced markers of oxidative stress and inflammation. Thus, moderately elevated plasma uric acid had beneficial effects on the kidney in this low-renin model of experimental renal insufficiency.


Assuntos
Hiperuricemia , Nefropatias , Insuficiência Renal , Animais , Ratos , Fibrose , Hiperuricemia/patologia , Inflamação/patologia , Rim , Nefrectomia , Ácido Oxônico/farmacologia , Insuficiência Renal/patologia , Renina/genética , Ácido Úrico
5.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077457

RESUMO

Hyperactive poly(ADP-ribose) polymerases (PARP) promote ischemic heart failure (IHF) after myocardial infarction (MI). However, the role of tankyrases (TNKSs), members of the PARP family, in pathogenesis of IHF remains unknown. We investigated the expression and activation of TNKSs in myocardium of IHF patients and MI rats. We explored the cardioprotective effect of TNKS inhibition in an isoproterenol-induced zebrafish HF model. In IHF patients, we observed elevated TNKS2 and DICER and concomitant upregulation of miR-34a-5p and miR-21-5p in non-infarcted myocardium. In a rat MI model, we found augmented TNKS2 and DICER in the border and infarct areas at the early stage of post-MI. We also observed consistently increased TNKS1 in the border and infarct areas and destabilized AXIN in the infarct area from 4 weeks onward, which in turn triggered Wnt/ß-catenin signaling. In an isoproterenol-induced HF zebrafish model, inhibition of TNKS activity with XAV939, a TNKSs-specific inhibitor, protected against ventricular dilatation and cardiac dysfunction and abrogated overactivation of Wnt/ß-catenin signaling and dysregulation of miR-34a-5p induced by isoproterenol. Our study unravels a potential role of TNKSs in the pathogenesis of IHF by regulating Wnt/ß-catenin signaling and possibly modulating miRNAs and highlights the pharmacotherapeutic potential of TNKS inhibition for prevention of IHF.


Assuntos
Insuficiência Cardíaca , MicroRNAs , Tanquirases , Animais , Dilatação , Insuficiência Cardíaca/tratamento farmacológico , Isoproterenol/farmacologia , MicroRNAs/genética , Ratos , Tanquirases/antagonistas & inibidores , Tanquirases/metabolismo , Via de Sinalização Wnt , Peixe-Zebra/metabolismo , beta Catenina/metabolismo
6.
Front Cardiovasc Med ; 9: 919355, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783854

RESUMO

Objectives: Impaired protein kinase signaling is a hallmark of ischemic heart disease (IHD). Inadequate understanding of the pathological mechanisms limits the development of therapeutic approaches. We aimed to identify the key cardiac kinases and signaling pathways in patients with IHD with an effort to discover potential therapeutic strategies. Methods: Cardiac kinase activity in IHD left ventricle (LV) and the related signaling pathways were investigated by kinomics, transcriptomics, proteomics, and integrated multi-omics approach. Results: Protein kinase A (PKA) and protein kinase G (PKG) ranked on top in the activity shift among the cardiac kinases. In the IHD LVs, PKA activity decreased markedly compared with that of controls (62% reduction, p = 0.0034), whereas PKG activity remained stable, although the amount of PKG protein increased remarkably (65%, p = 0.003). mRNA levels of adenylate cyclases (ADCY 1, 3, 5, 9) and cAMP-hydrolysing phosphodiesterases (PDE4A, PDE4D) decreased significantly, although no statistically significant alterations were observed in that of PKGs (PRKG1 and PRKG2) and guanylate cyclases (GUCYs). The gene expression of natriuretic peptide CNP decreased remarkably, whereas those of BNP, ANP, and neprilysin increased significantly in the IHD LVs. Proteomics analysis revealed a significant reduction in protein levels of "Energy metabolism" and "Muscle contraction" in the patients. Multi-omics integration highlighted intracellular signaling by second messengers as the top enriched Reactome pathway. Conclusion: The deficiency in cAMP/PKA signaling pathway is strongly implicated in the pathogenesis of IHD. Natriuretic peptide CNP could be a potential therapeutic target for the modulation of cGMP/PKG signaling.

7.
Mol Ther Methods Clin Dev ; 24: 171-180, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35118162

RESUMO

Despite promising findings, quantitative PCR (qPCR)-based tests for RNA quantification have experienced serious limitations in their clinical application. The noticeable lack of technical standardization remains a huge obstacle in the translation of qPCR-based tests. The incorporation of qPCR-based tests into the clinic will benefit from guidelines for clinical research assay validation. This will ultimately impact the clinical management of the patient, including diagnosis, prognosis, prediction, monitoring of the therapeutic response, and evaluation of toxicity. However, clear assay validation protocols for biomarker investigation in clinical trials using molecular assays are currently lacking. Here, we will focus on the necessary steps, including sample acquisition, processing and storage, RNA purification, target selection, assay design, and experimental design, that need to be taken toward the appropriate validation of qRT-PCR assays in clinical research. These recommendations can fill the gap between research use only (RUO) and in vitro diagnostics (IVD). Our contribution provides a tool for basic and clinical research for the development of validated assays in the intermediate steps of biomarker research. These guidelines are based on the current understanding and consensus within the EU-CardioRNA COST Action consortium (www.cardiorna.eu). Their applicability encompasses all clinical areas.

8.
J Mol Cell Cardiol ; 165: 130-140, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34973276

RESUMO

BACKGROUND: Cardiac fibrosis stiffens the ventricular wall, predisposes to cardiac arrhythmias and contributes to the development of heart failure. In the present study, our aim was to identify novel miRNAs that regulate the development of cardiac fibrosis and could serve as potential therapeutic targets for myocardial fibrosis. METHODS AND RESULTS: Analysis for cardiac samples from sudden cardiac death victims with extensive myocardial fibrosis as the primary cause of death identified dysregulation of miR-185-5p. Analysis of resident cardiac cells from mice subjected to experimental cardiac fibrosis model showed induction of miR-185-5p expression specifically in cardiac fibroblasts. In vitro, augmenting miR-185-5p induced collagen production and profibrotic activation in cardiac fibroblasts, whereas inhibition of miR-185-5p attenuated collagen production. In vivo, targeting miR-185-5p in mice abolished pressure overload induced cardiac interstitial fibrosis. Mechanistically, miR-185-5p targets apelin receptor and inhibits the anti-fibrotic effects of apelin. Finally, analysis of left ventricular tissue from patients with severe cardiomyopathy showed an increase in miR-185-5p expression together with pro-fibrotic TGF-ß1 and collagen I. CONCLUSIONS: Our data show that miR-185-5p targets apelin receptor and promotes myocardial fibrosis.


Assuntos
Cardiomiopatias , MicroRNAs , Animais , Receptores de Apelina/metabolismo , Cardiomiopatias/metabolismo , Colágeno/metabolismo , Fibroblastos/metabolismo , Fibrose , Humanos , Camundongos , MicroRNAs/metabolismo
9.
Int J Mol Sci ; 22(24)2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34948382

RESUMO

Prior studies show that glycogen synthase kinase 3ß (GSK3ß) contributes to cardiac ischemic injury and cardiac hypertrophy. GSK3ß is constitutionally active and phosphorylation of GSK3ß at serine 9 (S9) inactivates the kinase and promotes cellular growth. GSK3ß is also phosphorylated at serine 389 (S389), but the significance of this phosphorylation in the heart is not known. We analyzed GSK3ß S389 phosphorylation in diseased hearts and utilized overexpression of GSK3ß carrying ser→ala mutations at S9 (S9A) and S389 (S389A) to study the biological function of constitutively active GSK3ß in primary cardiomyocytes. We found that phosphorylation of GSK3ß at S389 was increased in left ventricular samples from patients with dilated cardiomyopathy and ischemic cardiomyopathy, and in hearts of mice subjected to thoracic aortic constriction. Overexpression of either GSK3ß S9A or S389A reduced the viability of cardiomyocytes subjected to hypoxia-reoxygenation. Overexpression of double GSK3ß mutant (S9A/S389A) further reduced cardiomyocyte viability. Determination of protein synthesis showed that overexpression of GSK3ß S389A or GSK3ß S9A/S389A increased both basal and agonist-induced cardiomyocyte growth. Mechanistically, GSK3ß S389A mutation was associated with activation of mTOR complex 1 signaling. In conclusion, our data suggest that phosphorylation of GSK3ß at S389 enhances cardiomyocyte survival and protects from cardiomyocyte hypertrophy.


Assuntos
Cardiomegalia/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Isquemia Miocárdica/metabolismo , Miócitos Cardíacos/patologia , Animais , Cardiomegalia/patologia , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Isquemia Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Fosforilação , Ratos Sprague-Dawley
10.
Front Cell Dev Biol ; 9: 662583, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095129

RESUMO

Heart failure causes significant morbidity and mortality worldwide. The understanding of heart failure pathomechanisms and options for treatment remain incomplete. Zebrafish has proven useful for modeling human heart diseases due to similarity of zebrafish and mammalian hearts, fast easily tractable development, and readily available genetic methods. Embryonic cardiac development is rapid and cardiac function is easy to observe and quantify. Reverse genetics, by using morpholinos and CRISPR-Cas9 to modulate gene function, make zebrafish a primary animal model for in vivo studies of candidate genes. Zebrafish are able to effectively regenerate their hearts following injury. However, less attention has been given to using zebrafish models to increase understanding of heart failure and cardiac remodeling, including cardiac hypertrophy and hyperplasia. Here we discuss using zebrafish to study heart failure and cardiac remodeling, and review zebrafish genetic, drug-induced and other heart failure models, discussing the advantages and weaknesses of using zebrafish to model human heart disease. Using zebrafish models will lead to insights on the pathomechanisms of heart failure, with the aim to ultimately provide novel therapies for the prevention and treatment of heart failure.

11.
Int J Mol Sci ; 21(21)2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114482

RESUMO

Cardiogenic shock (CS) is a life-threatening emergency. New biomarkers are needed in order to detect patients at greater risk of adverse outcome. Our aim was to assess the characteristics of miR-21-5p, miR-122-5p, and miR-320a-3p in CS and evaluate the value of their expression levels in risk prediction. Circulating levels of miR-21-5p, miR-122-5p, and miR-320a-3p were measured from serial plasma samples of 179 patients during the first 5-10 days after detection of CS, derived from the CardShock study. Acute coronary syndrome was the most common cause (80%) of CS. Baseline (0 h) levels of miR-21-5p, miR-122-5p, and miR-320a-3p were all significantly elevated in nonsurvivors compared to survivors (p < 0.05 for all). Above median levels at 0h of each miRNA were each significantly associated with higher lactate and alanine aminotransferase levels and decreased glomerular filtration rates. After adjusting the multivariate regression analysis with established CS risk factors, miR-21-5p and miR-320a-3p levels above median at 0 h were independently associated with 90-day all-cause mortality (adjusted hazard ratio 1.8 (95% confidence interval 1.1-3.0), p = 0.018; adjusted hazard ratio 1.9 (95% confidence interval 1.2-3.2), p = 0.009, respectively). In conclusion, circulating plasma levels of miR-21-5p, miR-122-5p, and miR-320a-3p at baseline were all elevated in nonsurvivors of CS and associated with markers of hypoperfusion. Above median levels of miR-21-5p and miR-320a-3p at baseline appear to independently predict 90-day all-cause mortality. This indicates the potential of miRNAs as biomarkers for risk assessment in cardiogenic shock.


Assuntos
Síndrome Coronariana Aguda/epidemiologia , MicroRNAs/sangue , Choque Cardiogênico/mortalidade , Síndrome Coronariana Aguda/complicações , Síndrome Coronariana Aguda/genética , Síndrome Coronariana Aguda/mortalidade , Idoso , Biomarcadores/sangue , Feminino , Estudos de Associação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Choque Cardiogênico/genética , Análise de Sobrevida , Regulação para Cima
12.
Crit Care ; 24(1): 150, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32295614

RESUMO

BACKGROUND: The pathophysiology of septic acute kidney injury is inadequately understood. Recently, subphenotypes for sepsis and AKI have been derived. The objective of this study was to assess whether a combination of comorbidities, baseline clinical data, and biomarkers could classify meaningful subphenotypes in septic AKI with different outcomes. METHODS: We performed a post hoc analysis of the prospective Finnish Acute Kidney Injury (FINNAKI) study cohort. We included patients admitted with sepsis and acute kidney injury during the first 48 h from admission to intensive care (according to Kidney Disease Improving Global Outcome criteria). Primary outcomes were 90-day mortality and renal recovery on day 5. We performed latent class analysis using 30 variables obtained on admission to classify subphenotypes. Second, we used logistic regression to assess the association of derived subphenotypes with 90-day mortality and renal recovery on day 5. RESULTS: In total, 301 patients with septic acute kidney injury were included. Based on the latent class analysis, a two-class model was chosen. Subphenotype 1 was assigned to 133 patients (44%) and subphenotype 2 to 168 patients (56%). Increased levels of inflammatory and endothelial injury markers characterized subphenotype 2. At 90 days, 29% of patients in subphenotype 1 and 41% of patients in subphenotype 2 had died. Subphenotype 2 was associated with a lower probability of short-term renal recovery and increased 90-day mortality. CONCLUSIONS: In this post hoc analysis, we identified two subphenotypes of septic acute kidney injury with different clinical outcomes. Future studies are warranted to validate the suggested subphenotypes of septic acute kidney injury.


Assuntos
Injúria Renal Aguda/etiologia , Fenótipo , Recuperação de Função Fisiológica/fisiologia , Sepse/complicações , Injúria Renal Aguda/fisiopatologia , Idoso , Biomarcadores/análise , Biomarcadores/sangue , Distribuição de Qui-Quadrado , Feminino , Finlândia , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Sepse/sangue , Sepse/genética , Estatísticas não Paramétricas
13.
Int J Mol Sci ; 21(3)2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32023824

RESUMO

Chronic renal insufficiency (CRI) is characterized by increased endothelin 1 (ET-1) synthesis. We studied rat kidney endothelin receptor A (ETA) and receptor B (ETB) expressions after 12 and 27 weeks of 5/6 nephrectomy, and after 12 weeks of 0.3% adenine diet, representing proteinuric and interstitial inflammation models of CRI, respectively. Uric acid and calcium-phosphate metabolism were modulated after 5/6 nephrectomy, while ETA blocker and calcimimetic were given with adenine. Endothelin receptor mRNA levels were measured using RT-qPCR and protein levels using autoradiography (5/6 nephrectomy) or ELISA (adenine model). Both 12 and 27 weeks after 5/6 nephrectomy, kidney cortex ETA protein was increased by ~60% without changes in ETB protein, and the ETB:ETA ratio was reduced. However, the ETB:ETA mRNA ratio did not change. In the adenine model, kidney ETA protein was reduced by ~70%, while ETB protein was suppressed by ~95%, and the ETB:ETA ratio was reduced by ~85%, both at the protein and mRNA levels. The additional interventions did not influence the observed reductions in the ETB:ETA ratio. To conclude, unfavorable reduction in the ETB:ETA protein ratio was observed in two different models of CRI. Therefore, ETA blockade may be beneficial in a range of diseases that cause impaired kidney function.


Assuntos
Adenina/efeitos adversos , Receptor de Endotelina A/genética , Receptor de Endotelina B/genética , Insuficiência Renal Crônica/genética , Animais , Cálcio/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Córtex Renal/metabolismo , Masculino , Nefrectomia/efeitos adversos , Fosfatos/metabolismo , Ratos , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/metabolismo , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/metabolismo , Ácido Úrico/metabolismo
14.
EBioMedicine ; 51: 102608, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31911272

RESUMO

BACKGROUND: Vascular endothelial zinc finger 1 (Vezf1) is a transcription factor previously shown to regulate vasculogenesis and angiogenesis. We aimed to investigate the role of Vezf1 in the postnatal heart. METHODS: The role of Vezf1 in regulating cardiac growth and contractile function was studied in zebrafish and in primary cardiomyocytes. FINDINGS: We find that expression of Vezf1 is decreased in diseased human myocardium and mouse hearts. Our experimental data shows that knockdown of zebrafish Vezf1 reduces cardiac growth and results in impaired ventricular contractile response to ß-adrenergic stimuli. However, Vezf1 knockdown is not associated with dysregulation of cardiomyocyte Ca2+ transient kinetics. Gene ontology enrichment analysis indicates that Vezf1 regulates cardiac muscle contraction and dilated cardiomyopathy related genes and we identify cardiomyocyte Myh7/ß-MHC as key target for Vezf1. We further identify a key role for an MCAT binding site in the Myh7 promoter regulating the response to Vezf1 knockdown and show that TEAD-1 is a binding partner of Vezf1. INTERPRETATION: We demonstrate a role for Vezf1 in regulation of compensatory cardiac growth and cardiomyocyte contractile function, which may be relevant in human cardiac disease.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Contração Miocárdica , Miocárdio/metabolismo , Miocárdio/patologia , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Adrenérgicos/farmacologia , Animais , Sítios de Ligação , Cardiomiopatias/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Humanos , Luciferases/metabolismo , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Ratos Sprague-Dawley , Peixe-Zebra
15.
Ann Intensive Care ; 9(1): 103, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31512003

RESUMO

BACKGROUND: Injury to endothelium and glycocalyx predisposes to vascular leak, which may subsequently lead to increased fluid requirements and worse outcomes. In this post hoc study of the prospective multicenter observational Finnish Acute Kidney Injury (FINNAKI) cohort study conducted in 17 Finnish intensive care units, we studied the association of Syndecan-1 (SDC-1), Angiopoetin-2 (Ang-2), soluble thrombomodulin (sTM), vascular adhesion protein-1 (VAP-1) and interleukin-6 (IL-6) with fluid administration and balance among septic critical care patients and their association with development of acute kidney injury (AKI) and 90-day mortality. RESULTS: SDC-1, Ang-2, sTM, VAP-1 and IL-6 levels were measured at ICU admission from 619 patients with sepsis. VAP-1 decreased (p < 0.001) and IL-6 increased (p < 0.001) with increasing amounts of administered fluid, but other biomarkers did not show differences according to fluid administration. In linear regression models adjusted for IL-6, only VAP-1 was significantly associated with fluid administration on day 1 (p < 0.001) and the cumulative fluid balance on day 5/ICU discharge (p = 0.001). Of 415 patients admitted without AKI, altogether 112 patients (27.0%) developed AKI > 12 h from ICU admission (AKI>12 h). They had higher sTM levels than patients without AKI, and after multivariable adjustment log, sTM level was associated with AKI>12 h with OR (95% CI) of 12.71 (2.96-54.67), p = 0.001). Ninety-day non-survivors (n = 180; 29.1%) had higher SDC-1 and sTM levels compared to survivors. After adjustment for known confounders, log SDC-1 (OR [95% CI] 2.13 [1.31-3.49], p = 0.002), log sTM (OR [95% CI] 7.35 [2.29-23.57], p < 0.001), and log Ang-2 (OR [95% CI] 2.47 [1.44-4.14], p = 0.001) associated with an increased risk for 90-day mortality. Finally, patients who had high levels of all three markers, namely, SDC-1, Ang-2 and sTM, had an adjusted OR of 5.61 (95% CI 2.67-11.79; p < 0.001) for 90-day mortality. CONCLUSIONS: VAP-1 and IL-6 associated with fluid administration on the first ICU day. After adjusting for confounders, sTM was associated with development of AKI after 12 h from ICU admission. SDC-1, Ang-2 and sTM were independently associated with an increased risk for 90-day mortality.

18.
PLoS One ; 14(5): e0217291, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31120979

RESUMO

Acute kidney injury (AKI) is a syndrome that frequently affects the critically ill. Recently, an increased number of dinucleotide repeats in the HMOX1 gene were reported to associate with development of AKI in cardiac surgery. We aimed to test the replicability of this finding in a Finnish cohort of critically ill septic patients. This multicenter study was part of the national FINNAKI study. We genotyped 300 patients with severe AKI (KDIGO 2 or 3) and 353 controls without AKI (KDIGO 0) for the guanine-thymine (GTn) repeat in the promoter region of the HMOX1 gene. The allele calling was based on the number of repeats, the cut off being 27 repeats in the S-L (short to long) classification, and 27 and 34 repeats for the S-M-L2 (short to medium to very long) classification. The plasma concentrations of heme oxygenase-1 (HO-1) enzyme were measured on admission. The allele distribution in our patients was similar to that published previously, with peaks at 23 and 30 repeats. The S-allele increases AKI risk. An adjusted OR was 1.30 for each S-allele in an additive genetic model (95% CI 1.01-1.66; p = 0.041). Alleles with a repeat number greater than 34 were significantly associated with lower HO-1 concentration (p<0.001). In septic patients, we report an association between a short repeat in HMOX1 and AKI risk.


Assuntos
Injúria Renal Aguda/genética , Heme Oxigenase-1/genética , Repetições Minissatélites , Polimorfismo Genético , Sepse/genética , Injúria Renal Aguda/enzimologia , Injúria Renal Aguda/epidemiologia , Idoso , Alelos , Estudos de Coortes , Comorbidade , Estado Terminal , Feminino , Finlândia/epidemiologia , Predisposição Genética para Doença , Genótipo , Heme Oxigenase-1/sangue , Humanos , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , Estudos Prospectivos , Fatores de Risco , Sepse/enzimologia , Sepse/epidemiologia
19.
Noncoding RNA ; 5(2)2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30934986

RESUMO

Cardiovascular disease (CVD) remains the leading cause of death worldwide and, despite continuous advances, better diagnostic and prognostic tools, as well as therapy, are needed. The human transcriptome, which is the set of all RNA produced in a cell, is much more complex than previously thought and the lack of dialogue between researchers and industrials and consensus on guidelines to generate data make it harder to compare and reproduce results. This European Cooperation in Science and Technology (COST) Action aims to accelerate the understanding of transcriptomics in CVD and further the translation of experimental data into usable applications to improve personalized medicine in this field by creating an interdisciplinary network. It aims to provide opportunities for collaboration between stakeholders from complementary backgrounds, allowing the functions of different RNAs and their interactions to be more rapidly deciphered in the cardiovascular context for translation into the clinic, thus fostering personalized medicine and meeting a current public health challenge. Thus, this Action will advance studies on cardiovascular transcriptomics, generate innovative projects, and consolidate the leadership of European research groups in the field.COST (European Cooperation in Science and Technology) is a funding organization for research and innovation networks (www.cost.eu).

20.
J Cardiovasc Dev Dis ; 6(2)2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30987331

RESUMO

The let-7c family of micro-RNAs (miRNAs) is expressed during embryonic development and plays an important role in cell differentiation. We have investigated the role of let-7c in heart regeneration after injury in adult zebrafish. let-7c antagomir or scramble injections were given at one day after cryoinjury (1 dpi). Tissue samples were collected at 7 dpi, 14 dpi and 28 dpi and cardiac function was assessed before cryoinjury, 1 dpi, 7 dpi, 14 dpi and 28 dpi. Inhibition of let-7c increased the rate of fibrinolysis, increased the number of proliferating cell nuclear antigen (PCNA) positive cardiomyocytes at 7 dpi and increased the expression of the epicardial marker raldh2 at 7 dpi. Additionally, cardiac function measured with echocardiography recovered slightly more rapidly after inhibition of let-7c. These results reveal a beneficial role of let-7c inhibition in adult zebrafish heart regeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...