Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 556(7701): 386-390, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29643509

RESUMO

In the eukaryotic nucleus, DNA is packaged in the form of nucleosomes, each of which comprises about 147 base pairs of DNA wrapped around a histone protein octamer. The position and histone composition of nucleosomes is governed by ATP-dependent chromatin remodellers1-3 such as the 15-subunit INO80 complex 4 . INO80 regulates gene expression, DNA repair and replication by sliding nucleosomes, the exchange of histone H2A.Z with H2A, and the positioning of + 1 and -1 nucleosomes at promoter DNA5-8. The structures and mechanisms of these remodelling reactions are currently unknown. Here we report the cryo-electron microscopy structure of the evolutionarily conserved core of the INO80 complex from the fungus Chaetomium thermophilum bound to a nucleosome, at a global resolution of 4.3 Å and with major parts at 3.7 Å. The INO80 core cradles one entire gyre of the nucleosome through multivalent DNA and histone contacts. An Rvb1/Rvb2 AAA+ ATPase heterohexamer is an assembly scaffold for the complex and acts as a 'stator' for the motor and nucleosome-gripping subunits. The Swi2/Snf2 ATPase motor binds to nucleosomal DNA at superhelical location -6, unwraps approximately 15 base pairs, disrupts the H2A-DNA contacts and is poised to pump entry DNA into the nucleosome. Arp5 and Ies6 bind superhelical locations -2 and -3 to act as a counter grip for the motor, on the other side of the H2A-H2B dimer. The Arp5 insertion domain forms a grappler element that binds the nucleosome dyad, connects the Arp5 actin-fold and entry DNA over a distance of about 90 Å and packs against histone H2A-H2B near the 'acidic patch'. Our structure together with biochemical data 8 suggests a unified mechanism for nucleosome sliding and histone editing by INO80. The motor is part of a macromolecular ratchet, persistently pumping entry DNA across the H2A-H2B dimer against the Arp5 grip until a large nucleosome translocation step occurs. The transient exposure of H2A-H2B by motor activity as well as differential recognition of H2A.Z and H2A may regulate histone exchange.


Assuntos
Trifosfato de Adenosina/metabolismo , Chaetomium/enzimologia , Montagem e Desmontagem da Cromatina , Microscopia Crioeletrônica , DNA Helicases/ultraestrutura , Complexos Multiproteicos/ultraestrutura , Nucleossomos/metabolismo , Sequência de Aminoácidos , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , DNA/química , DNA/metabolismo , DNA/ultraestrutura , DNA Helicases/química , DNA Helicases/metabolismo , Proteínas Fúngicas , Histonas/química , Histonas/metabolismo , Histonas/ultraestrutura , Humanos , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Nucleossomos/química , Nucleossomos/ultraestrutura , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade
2.
Structure ; 23(3): 483-495, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25661652

RESUMO

As building blocks of diverse macromolecular complexes, the AAA+ ATPases Rvb1 and Rvb2 are crucial for many cellular activities including cancer-related processes. Their oligomeric structure and function remain unclear. We report the crystal structures of full-length heteromeric Rvb1·Rvb2 complexes in distinct nucleotide binding states. Chaetomium thermophilum Rvb1·Rvb2 assemble into hexameric rings of alternating molecules and into stable dodecamers. Intriguingly, the characteristic oligonucleotide-binding (OB) fold domains (DIIs) of Rvb1 and Rvb2 occupy unequal places relative to the compact AAA+ core ring. While Rvb1's DII forms contacts between hexamers, Rvb2's DII is rotated 100° outward, occupying lateral positions. ATP was retained bound to Rvb1 but not Rvb2 throughout purification, suggesting nonconcerted ATPase activities and nucleotide binding. Significant conformational differences between nucleotide-free and ATP-/ADP-bound states in the crystal structures and in solution suggest that the functional role of Rvb1·Rvb2 is mediated by highly interconnected structural switches. Our structures provide an atomic framework for dodecameric states and Rvb1·Rvb2's conformational plasticity.


Assuntos
Adenosina Trifosfatases/química , Chaetomium/enzimologia , Proteínas Fúngicas/química , Trifosfato de Adenosina/química , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Espalhamento a Baixo Ângulo
3.
Nucleic Acids Res ; 42(10): 6673-85, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24705700

RESUMO

In prokaryotes and archaea transfer ribonucleic acid (tRNA) stability as well as cellular UV protection relies on the post-transcriptional modification of uracil at position 8 (U8) of tRNAs by the 4-thiouridine synthetase ThiI. Here, we report three crystal structures of ThiI from Thermotoga maritima in complex with a truncated tRNA. The RNA is mainly bound by the N-terminal ferredoxin-like domain (NFLD) and the THUMP domain of one subunit within the ThiI homo-dimer thereby positioning the U8 close to the catalytic center in the pyrophosphatase domain of the other subunit. The recognition of the 3'-CCA end by the THUMP domain yields a molecular ruler defining the specificity for U8 thiolation. This first structure of a THUMP/NFLD-RNA complex might serve as paradigm for the RNA recognition by THUMP domains of other proteins. The ternary ThiI-RNA-ATP complex shows no significant structural changes due to adenosine triphosphate (ATP) binding, but two different states of active site loops are observed independent of the nucleotide loading state. Thereby conformational changes of the active site are coupled with conformational changes of the bound RNA. The ThiI-RNA complex structures indicate that full-length tRNA has to adopt a non-canonical conformation upon binding to ThiI.


Assuntos
Proteínas de Bactérias/química , RNA de Transferência/química , Sulfurtransferases/química , Uracila/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Conformação de Ácido Nucleico , Multimerização Proteica , RNA de Transferência/metabolismo , Sulfurtransferases/metabolismo , Thermotoga maritima/enzimologia , Tiouridina/metabolismo , Uracila/metabolismo
4.
Cell ; 154(6): 1207-19, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-24034245

RESUMO

INO80/SWR1 family chromatin remodelers are complexes composed of >15 subunits and molecular masses exceeding 1 MDa. Their important role in transcription and genome maintenance is exchanging the histone variants H2A and H2A.Z. We report the architecture of S. cerevisiae INO80 using an integrative approach of electron microscopy, crosslinking and mass spectrometry. INO80 has an embryo-shaped head-neck-body-foot architecture and shows dynamic open and closed conformations. We can assign an Rvb1/Rvb2 heterododecamer to the head in close contact with the Ino80 Snf2 domain, Ies2, and the Arp5 module at the neck. The high-affinity nucleosome-binding Nhp10 module localizes to the body, whereas the module that contains actin, Arp4, and Arp8 maps to the foot. Structural and biochemical analyses indicate that the nucleosome is bound at the concave surface near the neck, flanked by the Rvb1/2 and Arp8 modules. Our analysis establishes a structural and functional framework for this family of large remodelers.


Assuntos
Nucleossomos/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Montagem e Desmontagem da Cromatina , Espectrometria de Massas , Modelos Moleculares , Nucleossomos/metabolismo , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
5.
Nucleic Acids Res ; 40(21): 11036-46, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22977180

RESUMO

Nuclear actin-related proteins (Arps) are subunits of several chromatin remodelers, but their molecular functions within these complexes are unclear. We report the crystal structure of the INO80 complex subunit Arp8 in its ATP-bound form. Human Arp8 has several insertions in the conserved actin fold that explain its inability to polymerize. Most remarkably, one insertion wraps over the active site cleft and appears to rigidify the domain architecture, while active site features shared with actin suggest an allosterically controlled ATPase activity. Quantitative binding studies with nucleosomes and histone complexes reveal that Arp8 and the Arp8-Arp4-actin-HSA sub-complex of INO80 strongly prefer nucleosomes and H3-H4 tetramers over H2A-H2B dimers, suggesting that Arp8 functions as a nucleosome recognition module. In contrast, Arp4 prefers free (H3-H4)(2) over nucleosomes and may serve remodelers through binding to (dis)assembly intermediates in the remodeling reaction.


Assuntos
Proteínas dos Microfilamentos/química , Nucleossomos/metabolismo , Actinas/química , Actinas/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Humanos , Proteínas dos Microfilamentos/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
6.
Curr Opin Struct Biol ; 22(2): 225-33, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22445226

RESUMO

Swi2/Snf2 (switch/sucrose non-fermentable) enzymes form a large and diverse class of proteins and multiprotein assemblies that remodel nucleic acid:protein complexes, using the energy of ATP hydrolysis. The core Swi2/Snf2 type ATPase domain belongs to the 'helicase and NTP driven nucleic acid translocase' superfamily 2 (SF2). It serves as a motor that functionally and structurally interacts with different targeting domains and functional modules to drive a plethora of remodeling activities in chromatin structure and dynamics, transcription regulation and DNA repair. Recent progress on the interaction of Swi2/Snf2 enzymes and multiprotein assemblies with their substrate nucleic acids and proteins, using hybrid structural biology methods, illuminates mechanisms for complex chemo-mechanical remodeling reactions. For Mot1, a hybrid mechanism of remodeler and chaperone emerged.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Fatores de Transcrição/química , Adenosina Trifosfatases/metabolismo , Animais , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Ácidos Nucleicos/química , Ácidos Nucleicos/metabolismo , Nucleossomos/química , Nucleossomos/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo
7.
J Mol Biol ; 399(4): 604-17, 2010 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-20434457

RESUMO

The reliable repair of pre-mutagenic U/G mismatches that originated from hydrolytic cytosine deamination is crucial for the maintenance of the correct genomic information. In most organisms, any uracil base in DNA is attacked by uracil DNA glycosylases (UDGs), but at least in Methanothermobacter thermautotrophicus DeltaH, an alternative strategy has evolved. The exonuclease III homologue Mth212 from the thermophilic archaeon M. thermautotrophicus DeltaH exhibits a DNA uridine endonuclease activity in addition to the apyrimidinic/apurinic site endonuclease and 3'-->5'exonuclease functions. Mth212 alone compensates for the lack of a UDG in a single-step reaction thus substituting the two-step pathway that requires the consecutive action of UDG and apyrimidinic/apurinic site endonuclease. In order to gain deeper insight into the structural basis required for the specific uridine recognition by Mth212, we have characterized the enzyme by means of X-ray crystallography. Structures of Mth212 wild-type or mutant proteins either alone or in complex with DNA substrates and products have been determined to a resolution of up to 1.2 A, suggesting key residues for the uridine endonuclease activity. The insertion of the side chain of Arg209 into the DNA helical base stack resembles interactions observed in human UDG and seems to be crucial for the uridine recognition. In addition, Ser171, Asn153, and Lys125 in the substrate binding pocket appear to have important functions in the discrimination of aberrant uridine against naturally occurring thymidine and cytosine residues in double-stranded DNA.


Assuntos
DNA Arqueal/química , DNA Arqueal/metabolismo , Desoxirribonuclease I/química , Desoxirribonuclease I/metabolismo , Methanobacteriaceae/enzimologia , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sequência de Bases , Domínio Catalítico , Cristalografia por Raios X , Reparo do DNA , DNA Arqueal/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Desoxirribonuclease I/genética , Exodesoxirribonucleases/química , Exodesoxirribonucleases/metabolismo , Humanos , Substâncias Macromoleculares/química , Methanobacteriaceae/genética , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformação de Ácido Nucleico , Conformação Proteica , Eletricidade Estática , Especificidade por Substrato
8.
BMC Struct Biol ; 9: 56, 2009 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-19706171

RESUMO

BACKGROUND: The lysosomal 66.3 kDa protein from mouse is a soluble, mannose 6-phosphate containing protein of so far unknown function. It is synthesized as a glycosylated 75 kDa precursor that undergoes limited proteolysis leading to a 28 kDa N- and a 40 kDa C-terminal fragment. RESULTS: In order to gain insight into the function and the post-translational maturation process of the glycosylated 66.3 kDa protein, three crystal structures were determined that represent different maturation states. These structures demonstrate that the 28 kDa and 40 kDa fragment which have been derived by a proteolytic cleavage remain associated. Mass spectrometric analysis confirmed the subsequent trimming of the C-terminus of the 28 kDa fragment making a large pocket accessible, at the bottom of which the putative active site is located. The crystal structures reveal a significant similarity of the 66.3 kDa protein to several bacterial hydrolases. The core alphabetabetaalpha sandwich fold and a cysteine residue at the N-terminus of the 40 kDa fragment (C249) classify the 66.3 kDa protein as a member of the structurally defined N-terminal nucleophile (Ntn) hydrolase superfamily. CONCLUSION: Due to the close resemblance of the 66.3 kDa protein to members of the Ntn hydrolase superfamily a hydrolytic activity on substrates containing a non-peptide amide bond seems reasonable. The structural homology which comprises both the overall fold and essential active site residues also implies an autocatalytic maturation process of the lysosomal 66.3 kDa protein. Upon the proteolytic cleavage between S248 and C249, a deep pocket becomes solvent accessible, which harbors the putative active site of the 66.3 kDa protein.


Assuntos
Glicoproteínas/química , Glicoproteínas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/química , Proteínas/metabolismo , Animais , Proteínas de Bactérias/química , Domínio Catalítico , Linhagem Celular Tumoral , Cristalografia por Raios X , Glicosilação , Humanos , Camundongos , Modelos Moleculares , Penicilina Amidase/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína
9.
Acta Crystallogr D Biol Crystallogr ; 65(Pt 3): 220-8, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19237744

RESUMO

The 66.3 kDa protein from mouse is a soluble protein of the lysosomal matrix. It is synthesized as a glycosylated 75 kDa preproprotein which is further processed into 28 and 40 kDa fragments. Despite bioinformatics approaches and molecular characterization of the 66.3 kDa protein, the mode of its maturation as well as its physiological function remained unknown. Therefore, it was decided to tackle this question by means of X-ray crystallography. After expression in a human fibrosarcoma cell line, the C-terminally His-tagged single-chain 66.3 kDa variant and the double-chain form consisting of a 28 kDa fragment and a 40 kDa fragment were purified to homogeneity but could not be separated during the purification procedure. This mixture was therefore used for crystallization. Single crystals were obtained and the structure of the 66.3 kDa protein was solved by means of sulfur SAD phasing using data collected at a wavelength of 1.9 A on the BESSY beamline BL14.2 of Freie Universität Berlin. Based on the anomalous signal, a 22-atom substructure comprising 21 intrinsic S atoms and one Xe atom with very low occupancy was found and refined at a resolution of 2.4 A using the programs SHELXC/D and SHARP. Density modification using SOLOMON and DM resulted in a high-quality electron-density map, enabling automatic model building with ARP/wARP. The initial model contained 85% of the amino-acid residues expected to be present in the asymmetric unit of the crystal. Subsequently, the model was completed and refined to an R(free) factor of 19.8%. The contribution of the single Xe atom to the anomalous signal was analyzed in comparison to that of the S atoms and was found to be negligible. This work should encourage the use of the weak anomalous scattering of intrinsic S atoms in SAD phasing, especially for proteins, which require both expensive and time-consuming expression and purification procedures, preventing extensive screening of heavy-atom crystal soaks.


Assuntos
Cristalografia por Raios X/métodos , Glicoproteínas/química , Lisossomos/enzimologia , Animais , Cristalização , Cristalografia por Raios X/estatística & dados numéricos , Glicosilação , Manosefosfatos/química , Camundongos , Modelos Moleculares , Conformação Proteica , Processamento de Proteína Pós-Traducional , Espalhamento de Radiação , Enxofre/química , Xenônio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...