Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Anim Res ; 36(1): 41, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33292732

RESUMO

WDR13 - a WD repeat protein, is abundant in pancreas, liver, ovary and testis. Absence of this protein in mice has been seen to be associated with pancreatic ß-cell proliferation, hyperinsulinemia and age dependent mild obesity. Previously, we have reported that the absence of WDR13 in diabetic Leprdb/db mice helps in amelioration of fatty liver phenotype along with diabetes and systemic inflammation. This intrigued us to study direct liver injury and hepatic regeneration in Wdr13-/0 mice using hepatotoxin CCl4. In the present study we report slower hepatic regeneration in Wdr13-/0 mice as compared to their wild type littermates after CCl4 administration. Interestingly, during the regeneration phase, hepatic hypertriglyceridemia was observed in Wdr13-/0 mice. Further analyses revealed an upregulation of PPAR pathway in the liver of CCl4- administered Wdr13-/0 mice, causing de novo lipogenesis. The slower hepatic regeneration observed in CCl4 administered Wdr13-/0 mice, may be linked to liver hypertriglyceridemia because of activation of PPAR pathway.

2.
J Biol Chem ; 293(1): 132-147, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29133525

RESUMO

Autophagy is a quality-control mechanism that helps to maintain cellular homeostasis by removing damaged proteins and organelles through lysosomal degradation. During autophagy, signaling events lead to the formation of a cup-shaped structure called the phagophore that matures into the autophagosome. Recruitment of the autophagy-associated Atg12-5-16L1 complex to Wipi2-positive phagophores is crucial for producing microtubule-associated protein 1 light chain 3-II (LC3-II), which is required for autophagosome formation. Here, we explored the role of the autophagy receptor optineurin (Optn) in autophagosome formation. Fibroblasts from Optn knock-out mouse showed reduced LC3-II formation and a lower number of autophagosomes and autolysosomes during both basal and starvation-induced autophagy. However, the number of Wipi2-positive phagophores was not decreased in Optn-deficient cells. We also found that the number of Atg12/16L1-positive puncta and recruitment of the Atg12-5-16L1 complex to Wipi2-positive puncta are reduced in Optn-deficient cells. Of note, Optn was recruited to Atg12-5-16L1-positive puncta, and interacted with Atg5 and also with Atg12-5 conjugate. A disease-associated Optn mutant, E478G, defective in ubiquitin binding, was also defective in autophagosome formation and recruitment to the Atg12-5-16L1-positive puncta. Moreover, we noted that Optn phosphorylation at Ser-177 was required for autophagosome formation but not for Optn recruitment to the phagophore. These results suggest that Optn potentiates LC3-II production and maturation of the phagophore into the autophagosome, by facilitating the recruitment of the Atg12-5-16L1 complex to Wipi2-positive phagophores.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Transporte/metabolismo , Proteínas do Olho/metabolismo , Proteínas de Membrana/metabolismo , Fator de Transcrição TFIIIA/metabolismo , Animais , Autofagossomos/metabolismo , Autofagia/fisiologia , Proteínas de Ciclo Celular , Feminino , Células HEK293 , Humanos , Masculino , Proteínas de Membrana Transportadoras , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Ligação a Fosfato , Ligação Proteica
3.
Front Mol Neurosci ; 9: 73, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27625594

RESUMO

WDR13 expresses from the X chromosome and has a highly conserved coding sequence. There have been multiple associations of WDR13 with memory. However, its detailed function in context of brain and behavior remains unknown. We characterized the behavioral phenotype of 2 month old male mice lacking the homolog of WDR13 gene (Wdr13 (-/0)). Taking cue from analysis of its expression in the brain, we chose hippocampus for molecular studies to delineate its function. Wdr13 (-/0) mice spent less time in the central area of the open field test (OFT) and with the novel object in novel object recognition test (NOR) as compared to the wild-type. However, these mice didn't show any significant changes in total time spent in arms or in frequency of arm entries in elevated plus maze (EPM). In the absence of Wdr13, there was a significant upregulation of synaptic proteins, viz., SYN1, RAB3A, CAMK2A etc. accompanied with increased spine density of hippocampal CA1 neurons and better spatial memory in mice as measured by increased time spent in the target quadrant of Morris water maze (MWM) during probe test. Parallel study from our lab has established c-JUN, ER α/ß, and HDAC 1,3,7 as interacting partners of WDR13. WDR13 represses transcription from AP1 (c-JUN responsive) and Estrogen Receptor Element (ERE) promoters. We hypothesized that absence of Wdr13 would result in de-regulated expression of a number of genes including multiple synaptic genes leading to the observed phenotype. Knocking down Wdr13 in Neuro2a cell lines led to increased transcripts of Camk2a and Nrxn2 consistent with in-vivo results. Summarily, our data provides functional evidence for the role of Wdr13 in brain.

4.
Sci Rep ; 5: 13371, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26306915

RESUMO

Placental development is essential for implantation and growth of foetus in the uterus of eutherian mammals. Numerous growth factors are responsible for placental development and cell lineage differentiation. Gene knockout mice have shown role of various genes in the placenta. Here using Wdr13 knockout mice, we show that this gene is important for proper placental development. Wdr13, a X-linked gene, expresses in multiple trophoblast cell types of placenta and the mutant placenta had reduced size after 17.5 dpc due to reduction of junctional zone (JZ) and labyrinth zone (LZ). We observed reduction in levels of angiopoietin-2 and cd44 mRNA in Wdr13 mutant placenta as compared to that in the wild type. Our findings show that Wdr13 is required for normal placental development and cell differentiation. Wdr13 heterozygous female placenta when the mutant allele was of maternal origin showed similar defects as those in case of Wdr13 null placenta. Using two types of heterozygous females carrying either maternally and paternally derived mutant Wdr13 allele we provide genetic evidence that development of placenta determines body weight of mice for the entire life.


Assuntos
Peso Corporal/fisiologia , Peso Fetal/fisiologia , Longevidade/fisiologia , Proteínas Nucleares/metabolismo , Placenta/metabolismo , Placentação/fisiologia , Animais , Proteínas de Ciclo Celular , Desenvolvimento Embrionário/fisiologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Gravidez , Estatística como Assunto
5.
Diabetologia ; 58(2): 384-92, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25417213

RESUMO

AIM/HYPOTHESIS: Type 2 diabetes is a complex disease characterised by hyperglycaemia, hyperinsulinaemia, dyslipidaemia and insulin resistance accompanied by inflammation. Previously, we showed that mice lacking the Wdr13 gene had increased islet mass due to enhanced beta cell proliferation. We hypothesised that introgression of a Wdr13-null mutation, a beta cell-proliferative phenotype, into Lepr(db/db) mice, a beta cell-destructive phenotype, might rescue the diabetic phenotype of the latter. METHODS: Wdr13-deficient mice were crossed with Lepr(db/db) mice to generate mice with the double mutation. We measured various serum metabolic variables of Wdr13(+/0)Lepr(db/db) and Wdr13(-/0) Lepr(db/db) mice. Further, we analysed the histopathology and gene expression of peroxisome proliferator-activated receptor (PPAR)γ and, activator protein (AP)1 targets in various metabolic tissues. RESULTS: Lepr(db/db) mice with the Wdr13 deletion had a massively increased islet mass, hyperinsulinaemia and adipocyte hypertrophy. The increase in beta cell mass in Wdr13(-/0)Lepr(db/db) mice was due to an increase in beta cell proliferation. Hypertrophy of adipocytes may be the result of increase in transcription of Pparg and its target genes, leading in turn to increased expression of several lipogenic genes. We also observed a significant decrease in the expression of AP1 and nuclear factor κ light chain enhancer of activated B cells (NFκB) target genes involved in inflammation. CONCLUSIONS/INTERPRETATION: This study provides evidence that loss of WD repeat domain 13 (WDR13) protein in the Lepr (db/db) mouse model of diabetes is beneficial. Based on these findings, we suggest that WDR13 may be a potential drug target for ameliorating hyperglycaemia and inflammation in diabetic conditions.


Assuntos
Adipócitos/metabolismo , Hiperglicemia/metabolismo , Inflamação/metabolismo , Proteínas Nucleares/metabolismo , PPAR gama/metabolismo , Receptores para Leptina/metabolismo , Animais , Proteínas de Ciclo Celular , Proliferação de Células , Modelos Animais de Doenças , Deleção de Genes , Expressão Gênica , Células Secretoras de Insulina , Camundongos , Camundongos Transgênicos , Proteínas Nucleares/genética , Fenótipo , Receptores para Leptina/genética
6.
Blood ; 122(8): 1478-86, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23782934

RESUMO

Polyphosphate (polyP), a polymer of orthophosphate moieties released from the dense granules of activated platelets, is a procoagulant agent. Inositol pyrophosphates, another group of phosphate-rich molecules, consist of mono- and diphosphates substituted on an inositol ring. Diphosphoinositol pentakisphosphate (IP7), the most abundant inositol pyrophosphate, is synthesized on phosphorylation of inositol hexakisphosphate (IP6) by IP6 kinases, of which there are 3 mammalian isoforms (IP6K1/2/3) and a single yeast isoform. Yeast lacking IP6 kinase are devoid of polyP, suggesting a role for IP6 kinase in maintaining polyP levels. We theorized that the molecular link between IP6 kinase and polyP is conserved in mammals and investigated whether polyP-dependent platelet function is altered in IP6K1 knockout (Ip6k1(-/-)) mice. We observe a significant reduction in platelet polyP levels in Ip6k1(-/-) mice, along with slower platelet aggregation and lengthened plasma clotting time. Incorporation of polyP into fibrin clots was reduced in Ip6k1(-/-) mice, thereby altering clot ultrastructure, which was rescued on the addition of exogenous polyP. In vivo assays revealed longer tail bleeding time and resistance to thromboembolism in Ip6k1(-/-) mice. Taken together, our data suggest a novel role for IP6K1 in regulation of mammalian hemostasis via its control of platelet polyP levels.


Assuntos
Plaquetas/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/fisiologia , Polifosfatos/metabolismo , Animais , Tempo de Sangramento , Coagulação Sanguínea , Hemostasia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Selectina-P/metabolismo , Ácido Fítico/metabolismo , Embolia Pulmonar/metabolismo , Trombina/metabolismo , Tromboembolia/sangue
7.
PLoS One ; 7(6): e38685, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22715406

RESUMO

WD-repeat proteins are very diverse, yet these are structurally related proteins that participate in a wide range of cellular functions. WDR13, a member of this family, is conserved from fishes to humans and localizes into the nucleus. To understand the in vivo function(s) of Wdr13 gene, we have created and characterized a mutant mouse strain lacking this gene. The mutant mice had higher serum insulin levels and increased pancreatic islet mass as a result of enhanced beta cell proliferation. While a known cell cycle inhibitor, p21, was downregulated in the mutant islets, over expression of WDR13 in the pancreatic beta cell line (MIN6) resulted in upregulation of p21, accompanied by retardation of cell proliferation. We suggest that WDR13 is a novel negative regulator of the pancreatic beta cell proliferation. Given the higher insulin levels and better glucose clearance in Wdr13 gene deficient mice, we propose that this protein may be a potential candidate drug target for ameliorating impaired glucose metabolism in diabetes.


Assuntos
Proliferação de Células , Hiperinsulinismo/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas Nucleares/deficiência , Animais , Proteínas de Ciclo Celular , Linhagem Celular , Inibidor de Quinase Dependente de Ciclina p21/biossíntese , Inibidor de Quinase Dependente de Ciclina p21/genética , Regulação para Baixo/genética , Hiperinsulinismo/genética , Hiperinsulinismo/patologia , Insulina/genética , Insulina/metabolismo , Células Secretoras de Insulina/patologia , Camundongos , Camundongos Knockout , Proteínas Nucleares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...