Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 195(1): 43, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36301354

RESUMO

The current study was focused on hydrogeochemistry of Ambagarh chowki groundwater. The main aim of the study was to evaluate the water quality for drinking and irrigation uses, hydrogeochemistry of groundwater. For this purpose, various physicochemical parameters like pH, electrical conductivity (EC), total hardness (TH), chloride (Cl-), fluoride (F-), calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K+), bicarbonate (HCO3-), and sulfate (SO42-) were analyzed. The major dominating ions in groundwater was found as cation Ca2+ > Mg2+ > Na+ > K+ and as anions in order of HCO3- > Cl- > SO42- > F-. The pH of sampled groundwater was ranged from neutral to alkaline in nature (7.0-8.8). Among, all-analyzed parameters in groundwater were safe for drinking purpose except few ions and bicarbonate content was also exceeding the permissible limit which was not suitable for drinking purpose. The potential health hazard element fluoride was varied from 0.1 to 2.2 mg/l and positively associated with the pH, Na+, and HCO3- content in groundwater. The drinking water quality index (WQI) was fluctuated between 12.22 and 185.56 and reported that most of the groundwater was suitable for drinking purpose except only one sample was unsuitable for drinking. Irrigation water quality assessment of the area was performed by evaluating as sodium adsorption ratio (SAR), permeability index (PI), Kelly ratio (KR), magnesium hazard ratio (MHR), percent sodium (%Na), potential salinity (PS), and residual sodium carbonate (RSC). Whereas most of the groundwater were good and suitable for irrigation use excluding PI (3.70%), MHR (40.74%), RSC (22.22%) and PS (7.41%) were unsuitable for continuous irrigation. Hydrogeochemistry of groundwater evaluated with correlation, Piper, Gibbs, and other geochemical analysis. The Piper trilinear diagram reflects the Ca (Mg)-HCO3- type water was mainly contributed approximately 90% of entire sampled groundwater. The different ions in groundwater were originated from the rock water interaction through silicate and carbonate weathering of minerals.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Fluoretos/análise , Magnésio/análise , Bicarbonatos/análise , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Água Subterrânea/química , Qualidade da Água , Sódio/análise , Índia
2.
Front Chem ; 10: 917831, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118313

RESUMO

Nanotechnology is a fast-expanding area with a wide range of applications in science, engineering, health, pharmacy, and other fields. Among many techniques that are employed toward the production of nanoparticles, synthesis using green technologies is the simplest and environment friendly. Nanoparticles produced from plant extracts have become a very popular subject of study in recent decades due to their diverse advantages such as low-cost synthesis, product stability, and ecofriendly protocols. These merits have prompted the development of nanoparticles from a variety of sources, including bacteria, fungi, algae, proteins, enzymes, etc., allowing for large-scale production with minimal contamination. However, nanoparticles obtained from plant extracts and phytochemicals exhibit greater reduction and stabilization and hence have proven the diversity of properties, like catalyst/photocatalyst, magnetic, antibacterial, cytotoxicity, circulating tumor deoxy ribo nucleic acid (CT-DNA) binding, gas sensing, etc. In the current scenario, nanoparticles can also play a critical role in cleaning wastewater and making it viable for a variety of operations. Nano-sized photocatalysts have a great scope toward the removal of large pollutants like organic dyes, heavy metals, and pesticides in an eco-friendly and sustainable manner from industrial effluents. Thus, in this review article, we discuss the synthesis of several metal nanoparticles using diverse plant extracts, as well as their characterization via techniques like UV-vis (ultraviolet-visible), XRD (X-ray diffraction), SEM (scanning electron microscopy), TEM (transmission electron microscopy), FTIR (Fourier transform infrared spectroscopy), etc., and catalytic activity on various hazardous systems.

3.
Artif Cells Nanomed Biotechnol ; 44(6): 1448-56, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25960179

RESUMO

OBJECTIVE: The obejctive of the present study was to investigate the potential use of floating spheroids of Atorvastatin Calcium (ATS) Loaded nanostructured lipid carriers (NLCs). MATERIALS AND METHODS: The final formula of floating spheroids was optimized on the basis of shape (spherical), diameter (0.47 mm), lag time (20 s), and floating time (> 32 h). RESULTS: The results were further confirmed by different pharmacokinetic parameters-it was observed that the developed optimized floating ATS spheroid-loaded NLCs formulation has significantly improved relative bioavailability, that is, 3.053-folds through oral route in comparison to marketed formulation.


Assuntos
Atorvastatina , Portadores de Fármacos , Administração Oral , Animais , Atorvastatina/química , Atorvastatina/farmacocinética , Atorvastatina/farmacologia , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Feminino , Gravidez , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...