Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 12(12): e1006109, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27992883

RESUMO

Type IV pilus (T4P) systems are complex molecular machines that polymerize major pilin proteins into thin filaments displayed on bacterial surfaces. Pilus functions require rapid extension and depolymerization of the pilus, powered by the assembly and retraction ATPases, respectively. A set of low abundance minor pilins influences pilus dynamics by unknown mechanisms. The Vibrio cholerae toxin-coregulated pilus (TCP) is among the simplest of the T4P systems, having a single minor pilin TcpB and lacking a retraction ATPase. Here we show that TcpB, like its homolog CofB, initiates pilus assembly. TcpB co-localizes with the pili but at extremely low levels, equivalent to one subunit per pilus. We used a micropillars assay to demonstrate that TCP are retractile despite the absence of a retraction ATPase, and that retraction relies on TcpB, as a V. cholerae tcpB Glu5Val mutant is fully piliated but does not induce micropillars movements. This mutant is impaired in TCP-mediated autoagglutination and TcpF secretion, consistent with retraction being required for these functions. We propose that TcpB initiates pilus retraction by incorporating into the growing pilus in a Glu5-dependent manner, which stalls assembly and triggers processive disassembly. These results provide a framework for understanding filament dynamics in more complex T4P systems and the closely related Type II secretion system.


Assuntos
Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Vibrio cholerae/metabolismo , Fímbrias Bacterianas/ultraestrutura , Immunoblotting , Imuno-Histoquímica , Microscopia Eletrônica de Transmissão , Vibrio cholerae/ultraestrutura
2.
Mol Microbiol ; 99(2): 380-92, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26435398

RESUMO

Type IV pili (Tfp), which have been studied extensively in a few Gram-negative species, are the paradigm of a group of widespread and functionally versatile nano-machines. Here, we performed the most detailed molecular characterisation of Tfp in a Gram-positive bacterium. We demonstrate that the naturally competent Streptococcus sanguinis produces retractable Tfp, which like their Gram-negative counterparts can generate hundreds of piconewton of tensile force and promote intense surface-associated motility. Tfp power 'train-like' directional motion parallel to the long axis of chains of cells, leading to spreading zones around bacteria grown on plates. However, S. sanguinis Tfp are not involved in DNA uptake, which is mediated by a related but distinct nano-machine, and are unusual because they are composed of two pilins in comparable amounts, rather than one as normally seen. Whole genome sequencing identified a locus encoding all the genes involved in Tfp biology in S. sanguinis. A systematic mutational analysis revealed that Tfp biogenesis in S. sanguinis relies on a more basic machinery (only 10 components) than in Gram-negative species and that a small subset of four proteins dispensable for pilus biogenesis are essential for motility. Intriguingly, one of the piliated mutants that does not exhibit spreading retains microscopic motility but moves sideways, which suggests that the corresponding protein controls motion directionality. Besides establishing S. sanguinis as a useful new model for studying Tfp biology, these findings have important implications for our understanding of these widespread filamentous nano-machines.


Assuntos
Proteínas de Bactérias/metabolismo , Fímbrias Bacterianas/metabolismo , Streptococcus/citologia , Streptococcus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/genética , Streptococcus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...