Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Eur Arch Otorhinolaryngol ; 281(6): 2921-2930, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38200355

RESUMO

PURPOSE: Patient-to-image registration is a preliminary step required in surgical navigation based on preoperative images. Human intervention and fiducial markers hamper this task as they are time-consuming and introduce potential errors. We aimed to develop a fully automatic 2D registration system for augmented reality in ear surgery. METHODS: CT-scans and corresponding oto-endoscopic videos were collected from 41 patients (58 ears) undergoing ear examination (vestibular schwannoma before surgery, profound hearing loss requiring cochlear implant, suspicion of perilymphatic fistula, contralateral ears in cases of unilateral chronic otitis media). Two to four images were selected from each case. For the training phase, data from patients (75% of the dataset) and 11 cadaveric specimens were used. Tympanic membranes and malleus handles were contoured on both video images and CT-scans by expert surgeons. The algorithm used a U-Net network for detecting the contours of the tympanic membrane and the malleus on both preoperative CT-scans and endoscopic video frames. Then, contours were processed and registered through an iterative closest point algorithm. Validation was performed on 4 cases and testing on 6 cases. Registration error was measured by overlaying both images and measuring the average and Hausdorff distances. RESULTS: The proposed registration method yielded a precision compatible with ear surgery with a 2D mean overlay error of 0.65 ± 0.60 mm for the incus and 0.48 ± 0.32 mm for the round window. The average Hausdorff distance for these 2 targets was 0.98 ± 0.60 mm and 0.78 ± 0.34 mm respectively. An outlier case with higher errors (2.3 mm and 1.5 mm average Hausdorff distance for incus and round window respectively) was observed in relation to a high discrepancy between the projection angle of the reconstructed CT-scan and the video image. The maximum duration for the overall process was 18 s. CONCLUSIONS: A fully automatic 2D registration method based on a convolutional neural network and applied to ear surgery was developed. The method did not rely on any external fiducial markers nor human intervention for landmark recognition. The method was fast and its precision was compatible with ear surgery.


Assuntos
Redes Neurais de Computação , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Osso Temporal/diagnóstico por imagem , Osso Temporal/cirurgia , Realidade Aumentada , Otoscopia/métodos , Feminino , Gravação em Vídeo , Masculino , Otopatias/cirurgia , Otopatias/diagnóstico por imagem , Procedimentos Cirúrgicos Otológicos/métodos , Pessoa de Meia-Idade , Algoritmos , Cirurgia Assistida por Computador/métodos , Adulto , Membrana Timpânica/diagnóstico por imagem , Membrana Timpânica/cirurgia , Martelo/diagnóstico por imagem , Martelo/cirurgia , Endoscopia/métodos
2.
Sensors (Basel) ; 23(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37960391

RESUMO

Recently, deep learning (DL) models have been increasingly adopted for automatic analyses of medical data, including electrocardiograms (ECGs). Large, available ECG datasets, generally of high quality, often lack specific distortions, which could be helpful for enhancing DL-based algorithms. Synthetic ECG datasets could overcome this limitation. A generative adversarial network (GAN) was used to synthesize realistic 3D magnetohydrodynamic (MHD) distortion templates, as observed during magnetic resonance imaging (MRI), and then added to available ECG recordings to produce an augmented dataset. Similarity metrics, as well as the accuracy of a DL-based R-peak detector trained with and without data augmentation, were used to evaluate the effectiveness of the synthesized data. Three-dimensional MHD distortions produced by the proposed GAN were similar to the measured ones used as input. The precision of a DL-based R-peak detector, tested on actual unseen data, was significantly enhanced by data augmentation; its recall was higher when trained with augmented data. Using synthesized MHD-distorted ECGs significantly improves the accuracy of a DL-based R-peak detector, with a good generalization capacity. This provides a simple and effective alternative to collecting new patient data. DL-based algorithms for ECG analyses can suffer from bias or gaps in training datasets. Using a GAN to synthesize new data, as well as metrics to evaluate its performance, can overcome the scarcity issue of data availability.


Assuntos
Eletrocardiografia , Coração , Humanos , Algoritmos , Benchmarking , Imageamento por Ressonância Magnética
3.
Cardiovasc Eng Technol ; 14(4): 577-604, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37578731

RESUMO

This paper presents a novel approach to track objects from 4D-flow MRI data. A salient feature of the proposed method is that it fully exploits the geometrical and dynamical nature of the information provided by this imaging modality. The underlying idea consists in formulating the tracking problem as a data assimilation problem, in which both position and velocity observations are extracted from the 4D-flow MRI data series. Optimal state estimation is then performed in a sequential fashion via Kalman filtering. The capabilities of the method are extensively assessed in a numerical study involving synthetic and clinical data.


Assuntos
Imageamento por Ressonância Magnética , Modelos Cardiovasculares , Velocidade do Fluxo Sanguíneo , Imageamento por Ressonância Magnética/métodos , Imageamento Tridimensional/métodos , Movimento (Física)
4.
J Clin Med ; 12(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37629441

RESUMO

Today, image-guided systems play a significant role in improving the outcome of diagnostic and therapeutic interventions. They provide crucial anatomical information during the procedure to decrease the size and the extent of the approach, to reduce intraoperative complications, and to increase accuracy, repeatability, and safety. Image-to-patient registration is the first step in image-guided procedures. It establishes a correspondence between the patient's preoperative imaging and the intraoperative data. When it comes to the head-and-neck region, the presence of many sensitive structures such as the central nervous system or the neurosensory organs requires a millimetric precision. This review allows evaluating the characteristics and the performances of different registration methods in the head-and-neck region used in the operation room from the perspectives of accuracy, invasiveness, and processing times. Our work led to the conclusion that invasive marker-based methods are still considered as the gold standard of image-to-patient registration. The surface-based methods are recommended for faster procedures and applied on the surface tissues especially around the eyes. In the near future, computer vision technology is expected to enhance these systems by reducing human errors and cognitive load in the operating room.

5.
Comput Biol Med ; 162: 107052, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37263151

RESUMO

OBJECTIVE: ascending aortic aneurysm growth prediction is still challenging in clinics. In this study, we evaluate and compare the ability of local and global shape features to predict the ascending aortic aneurysm growth. MATERIAL AND METHODS: 70 patients with aneurysm, for which two 3D acquisitions were available, are included. Following segmentation, three local shape features are computed: (1) the ratio between maximum diameter and length of the ascending aorta centerline, (2) the ratio between the length of external and internal lines on the ascending aorta and (3) the tortuosity of the ascending tract. By exploiting longitudinal data, the aneurysm growth rate is derived. Using radial basis function mesh morphing, iso-topological surface meshes are created. Statistical shape analysis is performed through unsupervised principal component analysis (PCA) and supervised partial least squares (PLS). Two types of global shape features are identified: three PCA-derived and three PLS-based shape modes. Three regression models are set for growth prediction: two based on gaussian support vector machine using local and PCA-derived global shape features; the third is a PLS linear regression model based on the related global shape features. The prediction results are assessed and the aortic shapes most prone to growth are identified. RESULTS: the prediction root mean square error from leave-one-out cross-validation is: 0.112 mm/month, 0.083 mm/month and 0.066 mm/month for local, PCA-based and PLS-derived shape features, respectively. Aneurysms close to the root with a large initial diameter report faster growth. CONCLUSION: global shape features might provide an important contribution for predicting the aneurysm growth.


Assuntos
Aneurisma da Aorta Ascendente , Aneurisma Aórtico , Humanos , Aorta/diagnóstico por imagem , Estudos Retrospectivos
6.
IEEE Trans Biomed Eng ; 70(11): 3248-3259, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37390004

RESUMO

OBJECTIVE: We propose a procedure for calibrating 4 parameters governing the mechanical boundary conditions (BCs) of a thoracic aorta (TA) model derived from one patient with ascending aortic aneurysm. The BCs reproduce the visco-elastic structural support provided by the soft tissue and the spine and allow for the inclusion of the heart motion effect. METHODS: We first segment the TA from magnetic resonance imaging (MRI) angiography and derive the heart motion by tracking the aortic annulus from cine-MRI. A rigid-wall fluid-dynamic simulation is performed to derive the time-varying wall pressure field. We build the finite element model considering patient-specific material properties and imposing the derived pressure field and the motion at the annulus boundary. The calibration, which involves the zero-pressure state computation, is based on purely structural simulations. After obtaining the vessel boundaries from the cine-MRI sequences, an iterative procedure is performed to minimize the distance between them and the corresponding boundaries derived from the deformed structural model. A strongly-coupled fluid-structure interaction (FSI) analysis is finally performed with the tuned parameters and compared to the purely structural simulation. RESULTS AND CONCLUSION: The calibration with structural simulations allows to reduce maximum and mean distances between image-derived and simulation-derived boundaries from 8.64 mm to 6.37 mm and from 2.24 mm to 1.83 mm, respectively. The maximum root mean square error between the deformed structural and FSI surface meshes is 0.19 mm. This procedure may prove crucial for increasing the model fidelity in replicating the real aortic root kinematics.

7.
J Imaging ; 9(6)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37367471

RESUMO

A thoracic aortic aneurysm is an abnormal dilatation of the aorta that can progress and lead to rupture. The decision to conduct surgery is made by considering the maximum diameter, but it is now well known that this metric alone is not completely reliable. The advent of 4D flow magnetic resonance imaging has allowed for the calculation of new biomarkers for the study of aortic diseases, such as wall shear stress. However, the calculation of these biomarkers requires the precise segmentation of the aorta during all phases of the cardiac cycle. The objective of this work was to compare two different methods for automatically segmenting the thoracic aorta in the systolic phase using 4D flow MRI. The first method is based on a level set framework and uses the velocity field in addition to 3D phase contrast magnetic resonance imaging. The second method is a U-Net-like approach that is only applied to magnitude images from 4D flow MRI. The used dataset was composed of 36 exams from different patients, with ground truth data for the systolic phase of the cardiac cycle. The comparison was performed based on selected metrics, such as the Dice similarity coefficient (DSC) and Hausdorf distance (HD), for the whole aorta and also three aortic regions. Wall shear stress was also assessed and the maximum wall shear stress values were used for comparison. The U-Net-based approach provided statistically better results for the 3D segmentation of the aorta, with a DSC of 0.92 ± 0.02 vs. 0.86 ± 0.5 and an HD of 21.49 ± 24.8 mm vs. 35.79 ± 31.33 mm for the whole aorta. The absolute difference between the wall shear stress and ground truth slightly favored the level set method, but not significantly (0.754 ± 1.07 Pa vs. 0.737 ± 0.79 Pa). The results showed that the deep learning-based method should be considered for the segmentation of all time steps in order to evaluate biomarkers based on 4D flow MRI.

8.
Int J Bioprint ; 9(4): 736, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323498

RESUMO

With the development of three-dimensional (3D) printing, 3D-printed products have been widely used in medical fields, such as plastic surgery, orthopedics, dentistry, etc. In cardiovascular research, 3D-printed models are becoming more realistic in shape. However, from a biomechanical point of view, only a few studies have explored printable materials that can represent the properties of the human aorta. This study focuses on 3D-printed materials that might simulate the stiffness of human aortic tissue. First, the biomechanical properties of a healthy human aorta were defined and used as reference. The main objective of this study was to identify 3D printable materials that possess similar properties to the human aorta. Three synthetic materials, NinjaFlex (Fenner Inc., Manheim, USA), FilasticTM (Filastic Inc., Jardim Paulistano, Brazil), and RGD450+TangoPlus (Stratasys Ltd.©, Rehovot, Israel), were printed in different thicknesses. Uniaxial and biaxial tensile tests were performed to compute several biomechanical properties, such as thickness, stress, strain, and stiffness. We found that with the mixed material RGD450+TangoPlus, it was possible to achieve a similar stiffness to healthy human aorta. Moreover, the 50-shore-hardness RGD450+TangoPlus had similar thickness and stiffness to the human aorta.

9.
PLoS One ; 18(5): e0285165, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37146017

RESUMO

BACKGROUND: In acute cardiovascular disease management, the delay between the admission in a hospital emergency department and the assessment of the disease from a Delayed Enhancement cardiac MRI (DE-MRI) scan is one of the barriers for an immediate management of patients with suspected myocardial infarction or myocarditis. OBJECTIVES: This work targets patients who arrive at the hospital with chest pain and are suspected of having a myocardial infarction or a myocarditis. The main objective is to classify these patients based solely on clinical data in order to provide an early accurate diagnosis. METHODS: Machine learning (ML) and ensemble approaches have been used to construct a framework to automatically classify the patients according to their clinical conditions. 10-fold cross-validation is used during the model's training to avoid overfitting. Approaches such as Stratified, Over-sampling, Under-sampling, NearMiss, and SMOTE were tested in order to address the imbalance of the data (i.e. proportion of cases per pathology). The ground truth is provided by a DE-MRI exam (normal exam, myocarditis or myocardial infarction). RESULTS: The stacked generalization technique with Over-sampling seems to be the best one providing more than 97% of accuracy corresponding to 11 wrong classifications among 537 cases. Generally speaking, ensemble classifiers such as Stacking provided the best prediction. The five most important features are troponin, age, tobacco, sex and FEVG calculated from echocardiography. CONCLUSION: Our study provides a reliable approach to classify the patients in emergency department between myocarditis, myocardial infarction or other patient condition from only clinical information, considering DE-MRI as ground-truth. Among the different machine learning and ensemble techniques tested, the stacked generalization technique is the best one providing an accuracy of 97.4%. This automatic classification could provide a quick answer before imaging exam such as cardiovascular MRI depending on the patient's condition.


Assuntos
Infarto do Miocárdio , Miocardite , Humanos , Miocardite/diagnóstico por imagem , Miocardite/patologia , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/patologia , Imageamento por Ressonância Magnética/métodos , Ecocardiografia , Serviço Hospitalar de Emergência
10.
Front Physiol ; 14: 1125931, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36950300

RESUMO

The current guidelines for the ascending aortic aneurysm (AsAA) treatment recommend surgery mainly according to the maximum diameter assessment. This criterion has already proven to be often inefficient in identifying patients at high risk of aneurysm growth and rupture. In this study, we propose a method to compute a set of local shape features that, in addition to the maximum diameter D, are intended to improve the classification performances for the ascending aortic aneurysm growth risk assessment. Apart from D, these are the ratio DCR between D and the length of the ascending aorta centerline, the ratio EILR between the length of the external and the internal lines and the tortuosity T. 50 patients with two 3D acquisitions at least 6 months apart were segmented and the growth rate (GR) with the shape features related to the first exam computed. The correlation between them has been investigated. After, the dataset was divided into two classes according to the growth rate value. We used six different classifiers with input data exclusively from the first exam to predict the class to which each patient belonged. A first classification was performed using only D and a second with all the shape features together. The performances have been evaluated by computing accuracy, sensitivity, specificity, area under the receiver operating characteristic curve (AUROC) and positive (negative) likelihood ratio LHR+ (LHR-). A positive correlation was observed between growth rate and DCR (r = 0.511, p = 1.3e-4) and between GR and EILR (r = 0.472, p = 2.7e-4). Overall, the classifiers based on the four metrics outperformed the same ones based only on D. Among the diameter-based classifiers, k-nearest neighbours (KNN) reported the best accuracy (86%), sensitivity (55.6%), AUROC (0.74), LHR+ (7.62) and LHR- (0.48). Concerning the classifiers based on the four shape features, we obtained the best accuracy (94%), sensitivity (66.7%), specificity (100%), AUROC (0.94), LHR+ (+∞) and LHR- (0.33) with support vector machine (SVM). This demonstrates how automatic shape features detection combined with risk classification criteria could be crucial in planning the follow-up of patients with ascending aortic aneurysm and in predicting the possible dangerous progression of the disease.

11.
J Imaging ; 9(3)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36976120

RESUMO

Generative adversarial networks (GANs) have become increasingly powerful, generating mind-blowing photorealistic images that mimic the content of datasets they have been trained to replicate. One recurrent theme in medical imaging, is whether GANs can also be as effective at generating workable medical data, as they are for generating realistic RGB images. In this paper, we perform a multi-GAN and multi-application study, to gauge the benefits of GANs in medical imaging. We tested various GAN architectures, from basic DCGAN to more sophisticated style-based GANs, on three medical imaging modalities and organs, namely: cardiac cine-MRI, liver CT, and RGB retina images. GANs were trained on well-known and widely utilized datasets, from which their FID scores were computed, to measure the visual acuity of their generated images. We further tested their usefulness by measuring the segmentation accuracy of a U-Net trained on these generated images and the original data. The results reveal that GANs are far from being equal, as some are ill-suited for medical imaging applications, while others performed much better. The top-performing GANs are capable of generating realistic-looking medical images by FID standards, that can fool trained experts in a visual Turing test and comply to some metrics. However, segmentation results suggest that no GAN is capable of reproducing the full richness of medical datasets.

12.
MAGMA ; 36(5): 687-700, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36800143

RESUMO

OBJECTIVE: In the management of the aortic aneurysm, 4D flow magnetic resonance Imaging provides valuable information for the computation of new biomarkers using computational fluid dynamics (CFD). However, accurate segmentation of the aorta is required. Thus, our objective is to evaluate the performance of two automatic segmentation methods on the calculation of aortic wall pressure. METHODS: Automatic segmentation of the aorta was performed with methods based on deep learning and multi-atlas using the systolic phase in the 4D flow MRI magnitude image of 36 patients. Using mesh morphing, isotopological meshes were generated, and CFD was performed to calculate the aortic wall pressure. Node-to-node comparisons of the pressure results were made to identify the most robust automatic method respect to the pressures obtained with a manually segmented model. RESULTS: Deep learning approach presented the best segmentation performance with a mean Dice similarity coefficient and a mean Hausdorff distance (HD) equal to 0.92+/- 0.02 and 21.02+/- 24.20 mm, respectively. At the global level HD is affected by the performance in the abdominal aorta. Locally, this distance decreases to 9.41+/- 3.45 and 5.82+/- 6.23 for the ascending and descending thoracic aorta, respectively. Moreover, with respect to the pressures from the manual segmentations, the differences in the pressures computed from deep learning were lower than those computed from multi-atlas method. CONCLUSION: To reduce biases in the calculation of aortic wall pressure, accurate segmentation is needed, particularly in regions with high blood flow velocities. Thus, the deep learning segmen-tation method should be preferred.


Assuntos
Aprendizado Profundo , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Aorta Abdominal/diagnóstico por imagem , Velocidade do Fluxo Sanguíneo
13.
J Cardiovasc Magn Reson ; 25(1): 7, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36747201

RESUMO

BACKGROUND: Heart failure- (HF) and arrhythmia-related complications are the main causes of morbidity and mortality in patients with nonischemic dilated cardiomyopathy (NIDCM). Cardiovascular magnetic resonance (CMR) imaging is a noninvasive tool for risk stratification based on fibrosis assessment. Diffuse interstitial fibrosis in NIDCM may be a limitation for fibrosis assessment through late gadolinium enhancement (LGE), which might be overcome through quantitative T1 and extracellular volume (ECV) assessment. T1 and ECV prognostic value for arrhythmia-related events remain poorly investigated. We asked whether T1 and ECV have a prognostic value in NIDCM patients. METHODS: This prospective multicenter study analyzed 225 patients with NIDCM confirmed by CMR who were followed up for 2 years. CMR evaluation included LGE, native T1 mapping and ECV values. The primary endpoint was the occurrence of a major adverse cardiovascular event (MACE) which was divided in two groups: HF-related events and arrhythmia-related events. Optimal cutoffs for prediction of MACE occurrence were calculated for all CMR quantitative values. RESULTS: Fifty-eight patients (26%) developed a MACE during follow-up, 42 patients (19%) with HF-related events and 16 patients (7%) arrhythmia-related events. T1 Z-score (p = 0.008) and global ECV (p = 0.001) were associated with HF-related events occurrence, in addition to left ventricular ejection fraction (p < 0.001). ECV > 32.1% (optimal cutoff) remained the only CMR independent predictor of HF-related events occurrence (HR 2.15 [1.14-4.07], p = 0.018). In the arrhythmia-related events group, patients had increased native T1 Z-score and ECV values, with both T1 Z-score > 4.2 and ECV > 30.5% (optimal cutoffs) being independent predictors of arrhythmia-related events occurrence (respectively, HR 2.86 [1.06-7.68], p = 0.037 and HR 2.72 [1.01-7.36], p = 0.049). CONCLUSIONS: ECV was the sole independent predictive factor for both HF- and arrhythmia-related events in NIDCM patients. Native T1 was also an independent predictor in arrhythmia-related events occurrence. The addition of ECV and more importantly native T1 in the decision-making algorithm may improve arrhythmia risk stratification in NIDCM patients. Trial registration NCT02352129. Registered 2nd February 2015-Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT02352129.


Assuntos
Cardiomiopatia Dilatada , Insuficiência Cardíaca , Humanos , Cardiomiopatia Dilatada/patologia , Prognóstico , Volume Sistólico , Miocárdio/patologia , Meios de Contraste , Estudos Prospectivos , Função Ventricular Esquerda , Imagem Cinética por Ressonância Magnética/métodos , Valor Preditivo dos Testes , Gadolínio , Espectroscopia de Ressonância Magnética , Fibrose
14.
Med Image Anal ; 86: 102773, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36827870

RESUMO

Deep learning-based methods for cardiac MR segmentation have achieved state-of-the-art results. However, these methods can generate incorrect segmentation results which can lead to wrong clinical decisions in the downstream tasks. Automatic and accurate analysis of downstream tasks, such as myocardial tissue characterization, is highly dependent on the quality of the segmentation results. Therefore, it is of paramount importance to use quality control methods to detect the failed segmentations before further analysis. In this work, we propose a fully automatic uncertainty-based quality control framework for T1 mapping and extracellular volume (ECV) analysis. The framework consists of three parts. The first one focuses on segmentation of cardiac structures from a native and post-contrast T1 mapping dataset (n=295) using a Bayesian Swin transformer-based U-Net. In the second part, we propose a novel uncertainty-based quality control (QC) to detect inaccurate segmentation results. The QC method utilizes image-level uncertainty features as input to a random forest-based classifier/regressor to determine the quality of the segmentation outputs. The experimental results from four different types of segmentation results show that the proposed QC method achieves a mean area under the ROC curve (AUC) of 0.927 on binary classification and a mean absolute error (MAE) of 0.021 on Dice score regression, significantly outperforming other state-of-the-art uncertainty based QC methods. The performance gap is notably higher in predicting the segmentation quality from poor-performing models which shows the robustness of our method in detecting failed segmentations. After the inaccurate segmentation results are detected and rejected by the QC method, in the third part, T1 mapping and ECV values are computed automatically to characterize the myocardial tissues of healthy and cardiac pathological cases. The native myocardial T1 and ECV values computed from automatic and manual segmentations show an excellent agreement yielding Pearson coefficients of 0.990 and 0.975 (on the combined validation and test sets), respectively. From the results, we observe that the automatically computed myocardial T1 and ECV values have the ability to characterize myocardial tissues of healthy and cardiac diseases like myocardial infarction, amyloidosis, Tako-Tsubo syndrome, dilated cardiomyopathy, and hypertrophic cardiomyopathy.


Assuntos
Cardiomiopatia Hipertrófica , Miocárdio , Humanos , Incerteza , Teorema de Bayes , Miocárdio/patologia , Coração/diagnóstico por imagem , Cardiomiopatia Hipertrófica/patologia , Imageamento por Ressonância Magnética/métodos , Valor Preditivo dos Testes , Meios de Contraste
15.
Magn Reson Imaging ; 99: 20-25, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36621555

RESUMO

BACKGROUND: 4D flow MRI allows the analysis of hemodynamic changes in the aorta caused by pathologies such as thoracic aortic aneurysms (TAA). For personalized management of TAA, new biomarkers are required to analyze the effect of fluid structure iteration which can be obtained from 4D flow MRI. However, the generation of these biomarkers requires prior 4D segmentation of the aorta. OBJECTIVE: To develop an automatic deep learning model to segment the aorta in 4D from 4D flow MRI. METHODS: Segmentation is addressed with a U-Net based segmentation model that treats each 4D flow MRI frame as an independent sample. Performance is measured with respect to Dice score (DS) and Hausdorff distance (HD). In addition, the maximum and minimum surface areas at the level of the ascending aorta are measured and compared with those obtained from cine-MRI. RESULTS: The segmentation performance was 0.90 ± 0.02 for the DS and the mean HD was 9.58 ± 4.36 mm. A correlation coefficient of r = 0.85 was obtained for the maximum surface and r = 0.86 for the minimum surface between the 4D flow MRI and cine-MRI. CONCLUSION: The proposed automatic approach of 4D aortic segmentation from 4D flow MRI seems to be accurate enough to contribute to the wider use of this imaging technique in the analysis of pathologies such as TAA.


Assuntos
Aneurisma da Aorta Torácica , Aprendizado Profundo , Humanos , Aorta Torácica , Imageamento por Ressonância Magnética/métodos , Aorta , Imagem Cinética por Ressonância Magnética/métodos , Velocidade do Fluxo Sanguíneo
16.
J Clin Med ; 12(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36675331

RESUMO

Ascending aortic aneurysm is a pathology that is important to be supervised and treated. During the years the aorta dilates, it becomes stiff, and its elastic properties decrease. In some cases, the aortic wall can rupture leading to aortic dissection with a high mortality rate. The main reference standard to measure when the patient needs to undertake surgery is the aortic diameter. However, the aortic diameter was shown not to be sufficient to predict aortic dissection, implying other characteristics should be considered. Therefore, the main objective of this work is to assess in-vivo the elastic properties of four different quadrants of the ascending aorta and compare the results with equivalent properties obtained ex-vivo. The database consists of 73 cine-MRI sequences of thoracic aorta acquired in axial orientation at the level of the pulmonary trunk. All the patients have dilated aorta and surgery is required. The exams were acquired just prior to surgery, each consisting of 30 slices on average across the cardiac cycle. Multiple deep learning architectures have been explored with different hyperparameters and settings to automatically segment the contour of the aorta on each image and then automatically calculate the aortic compliance. A semantic segmentation U-Net network outperforms the rest explored networks with a Dice score of 98.09% (±0.96%) and a Hausdorff distance of 4.88 mm (±1.70 mm). Local aortic compliance and local aortic wall strain were calculated from the segmented surfaces for each quadrant and then compared with elastic properties obtained ex-vivo. Good agreement was observed between Young's modulus and in-vivo strain. Our results suggest that the lateral and posterior quadrants are the stiffest. In contrast, the medial and anterior quadrants have the lowest aortic stiffness. The in-vivo stiffness tendency agrees with the values obtained ex-vivo. We can conclude that our automatic segmentation method is robust and compatible with clinical practice (thanks to a graphical user interface), while the in-vivo elastic properties are reliable and compatible with the ex-vivo ones.

17.
Front Oncol ; 13: 1285924, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260833

RESUMO

Introduction: Linear accelerator (linac) incorporating a magnetic resonance (MR) imaging device providing enhanced soft tissue contrast is particularly suited for abdominal radiation therapy. In particular, accurate segmentation for abdominal tumors and organs at risk (OARs) required for the treatment planning is becoming possible. Currently, this segmentation is performed manually by radiation oncologists. This process is very time consuming and subject to inter and intra operator variabilities. In this work, deep learning based automatic segmentation solutions were investigated for abdominal OARs on 0.35 T MR-images. Methods: One hundred and twenty one sets of abdominal MR images and their corresponding ground truth segmentations were collected and used for this work. The OARs of interest included the liver, the kidneys, the spinal cord, the stomach and the duodenum. Several UNet based models have been trained in 2D (the Classical UNet, the ResAttention UNet, the EfficientNet UNet, and the nnUNet). The best model was then trained with a 3D strategy in order to investigate possible improvements. Geometrical metrics such as Dice Similarity Coefficient (DSC), Intersection over Union (IoU), Hausdorff Distance (HD) and analysis of the calculated volumes (thanks to Bland-Altman plot) were performed to evaluate the results. Results: The nnUNet trained in 3D mode achieved the best performance, with DSC scores for the liver, the kidneys, the spinal cord, the stomach, and the duodenum of 0.96 ± 0.01, 0.91 ± 0.02, 0.91 ± 0.01, 0.83 ± 0.10, and 0.69 ± 0.15, respectively. The matching IoU scores were 0.92 ± 0.01, 0.84 ± 0.04, 0.84 ± 0.02, 0.54 ± 0.16 and 0.72 ± 0.13. The corresponding HD scores were 13.0 ± 6.0 mm, 16.0 ± 6.6 mm, 3.3 ± 0.7 mm, 35.0 ± 33.0 mm, and 42.0 ± 24.0 mm. The analysis of the calculated volumes followed the same behavior. Discussion: Although the segmentation results for the duodenum were not optimal, these findings imply a potential clinical application of the 3D nnUNet model for the segmentation of abdominal OARs for images from 0.35 T MR-Linac.

18.
J Clin Med ; 11(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36013136

RESUMO

Association of quadricuspid aortic valve (QAV) with ascending aortic aneurysms (AsAA) is rare. A 63-year-old female with hypertension was found (on MRI) to have an ascending aortic aneurysm (52 mm in maximum diameter) and dilatation at the level of the sinotubular junction (38 mm in diameter) associated with quadricuspid aortic valve. An ascending aortic wall replacement surgery was performed. In this study, we focus on the behavior of the aorta associated with QAV considering the in vitro biomechanical characteristics and histology. The properties of QAV are closer to bicuspid aortic valve than tricuspid aortic valve, but with higher wall thickness.

19.
Clin Pract ; 12(3): 350-362, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35645317

RESUMO

The aim of this study is to show the usefulness of collaborative work in the evaluation of prostate cancer from T2-weighted MRI using a dedicated software tool. The variability of annotations on images of the prostate gland (central and peripheral zones as well as tumour) by two independent experts was firstly evaluated, and secondly compared with a consensus between these two experts. Using a prostate MRI database, experts drew regions of interest (ROIs) corresponding to healthy prostate (peripheral and central zones) and cancer. One of the experts then drew the ROI with knowledge of the other expert's ROI. The surface area of each ROI was used to measure the Hausdorff distance and the Dice coefficient was measured from the respective contours. They were evaluated between the different experiments, taking the annotations of the second expert as the reference. The results showed that the significant differences between the two experts disappeared with collaborative work. To conclude, this study shows that collaborative work with a dedicated tool allows consensus between expertise in the evaluation of prostate cancer from T2-weighted MRI.

20.
Acta Biomater ; 149: 40-50, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35714897

RESUMO

Ascending aortic aneurysm (AsAA) is a high-risk cardiovascular disease with an increased incidence over years. In this study, we compared different risk factors based on the pre-failure behavior (from a biomechanical point of view) obtained ex-vivo from an equi-biaxial tensile test. A total of 100 patients (63 ± 12 years, 72 males) with AsAA replacement, were recruited. Equi-biaxial tensile tests of AsAA walls were performed on freshly sampled aortic wall tissue after ascending aortic replacement. The aneurysmal aortic walls were divided into four quadrants (medial, anterior, lateral, and posterior) and two directions (longitudinal and circumferential) were considered. The stiffness was represented by the maximum Young modulus (MYM). Based on patient information, the following subgroups were considered: age, gender, hypertension, obesity, dyslipidemia, diabetes, smoking history, aortic insufficiency, aortic stenosis, coronary artery disease, aortic diameter and aortic valve type. In general, when the aortic diameter increased, the aortic wall became thicker. In terms of the MYM, the longitudinal direction was significantly higher than that in the circumferential direction. In the multivariant analysis, the impact factors of age (p = 0.07), smoking (p = 0.05), diabetes (p = 0.03), aortic stenosis (p = 0.02), coronary artery disease (p < 10-3), and aortic diameters (p = 0.02) were significantly influencing the MYM. There was no significant MYM difference when the patients presented arterial hypertension, dyslipidemia, obesity, or bicuspid aortic valve. To conclude, the pre-failure aortic stiffness is multi-factorial, according to our population of 100 patients with AsAA. STATEMENT OF SIGNIFICANCE: Our research on the topic of "Aortic local biomechanical properties in case of ascending aortic aneurysms" is about the biomechanical properties on one hundred aortic samples according to the aortic wall quadrants and the direction. More than ten factors and risks which may impact ascending aortic aneurysms have been studied. According to our knowledge, so far, this article involved the largest population on this topic. It will be our pleasure to share this information with all the readers.


Assuntos
Aneurisma da Aorta Torácica , Aneurisma Aórtico , Estenose da Valva Aórtica , Diabetes Mellitus , Hipertensão , Aorta , Aneurisma Aórtico/etiologia , Valva Aórtica , Fenômenos Biomecânicos , Humanos , Masculino , Obesidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...