Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 33(3): e16859, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36748324

RESUMO

Whole genome characterizations of crop plants based on ancient DNA have provided unique keys for a better understanding of the evolutionary origins of modern cultivars, the pace and mode of selection underlying their adaptation to new environments and the production of phenotypes of interest. Although forests are among the most biologically rich ecosystems on earth and represent a fundamental resource for human societies, no ancient genome sequences have been generated for trees. This contrasts with the generation of multiple ancient reference genomes for important crops. Here, we sequenced the first ancient tree genomes using two white oak wood remains from Germany dating to the Last Little Ice Age (15th century CE, 7.3× and 4.0×) and one from France dating to the Bronze Age (1700 BCE, 3.4×). We assessed the underlying species and identified one medieval remains as a hybrid between two common oak species (Quercus robur and Q. petraea) and the other two remains as Q. robur. We found that diversity at the global genome level had not changed over time. However, exploratory analyses suggested that a reduction of diversity took place at different time periods. Finally, we determined the timing of leaf unfolding for ancient trees for the first time. The study extends the application of ancient wood beyond the classical proxies of dendroclimatology, dendrochronology, dendroarchaeology and dendroecology, thereby enhancing resolution of inferences on the responses of forest ecosystems to past environmental changes, epidemics and silvicultural practices.


Assuntos
Quercus , Madeira , Humanos , Quercus/genética , Ecossistema , Florestas , Árvores/genética
2.
BMC Plant Biol ; 23(1): 108, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36814198

RESUMO

BACKGROUND: Global warming raises serious concerns about the persistence of species and populations locally adapted to their environment, simply because of the shift it produces in their adaptive landscape. For instance, the phenological cycle of tree species may be strongly affected by higher winter temperatures and late frost in spring. Given the variety of ecosystem services they provide, the question of forest tree adaptation has received increasing attention in the scientific community and catalyzed research efforts in ecology, evolutionary biology and functional genomics to study their adaptive capacity to respond to such perturbations. RESULTS: In the present study, we used an elevation gradient in the Pyrenees Mountains to explore the gene expression network underlying dormancy regulation in natural populations of sessile oak stands sampled along an elevation cline and potentially adapted to different climatic conditions mainly driven by temperature. By performing analyses of gene expression in terminal buds we identified genes displaying significant dormancy, elevation or dormancy-by-elevation interaction effects. Our Results highlighted that low- and high-altitude populations have evolved different molecular strategies for minimizing late frost damage and maximizing the growth period, thereby increasing potentially their respective fitness in these contrasting environmental conditions. More particularly, population from high elevation overexpressed genes involved in the inhibition of cell elongation and delaying flowering time while genes involved in cell division and flowering, enabling buds to flush earlier were identified in population from low elevation. CONCLUSION: Our study made it possible to identify key dormancy-by-elevation responsive genes revealing that the stands analyzed in this study have evolved distinct molecular strategies to adapt their bud phenology in response to temperature.


Assuntos
Quercus , Quercus/genética , Ecossistema , Temperatura , Estações do Ano , Florestas , Árvores
3.
Plant Physiol ; 190(4): 2466-2483, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36066428

RESUMO

Drought and waterlogging impede tree growth and may even lead to tree death. Oaks, an emblematic group of tree species, have evolved a range of adaptations to cope with these constraints. The two most widely distributed European species, pedunculate (PO; Quercus robur L.) and sessile oak (SO; Quercus petraea Matt. Lieb), have overlapping ranges, but their respective distribution are highly constrained by local soil conditions. These contrasting ecological preferences between two closely related and frequently hybridizing species constitute a powerful model to explore the functional bases of the adaptive responses in oak. We exposed oak seedlings to waterlogging and drought, conditions typically encountered by the two species in their respective habitats, and studied changes in gene expression in roots using RNA-seq. We identified genes that change in expression between treatments differentially depending on species. These "species × environment"-responsive genes revealed adaptive molecular strategies involving adventitious and lateral root formation, aerenchyma formation in PO, and osmoregulation and ABA regulation in SO. With this experimental design, we also identified genes with different expression between species independently of water conditions imposed. Surprisingly, this category included genes with functions consistent with a role in intrinsic reproductive barriers. Finally, we compared our findings with those for a genome scan of species divergence and found that the expressional candidate genes included numerous highly differentiated genetic markers between the two species. By combining transcriptomic analysis, gene annotation, pathway analyses, as well as genome scan for genetic differentiation among species, we were able to highlight loci likely involved in adaptation of the two species to their respective ecological niches.


Assuntos
Quercus , Quercus/genética , Água/metabolismo , Solo , Árvores/metabolismo , Expressão Gênica
4.
Evol Lett ; 6(1): 4-20, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35127134

RESUMO

The pace of tree microevolution during Anthropocene warming is largely unknown. We used a retrospective approach to monitor genomic changes in oak trees since the Little Ice Age (LIA). Allelic frequency changes were assessed from whole-genome pooled sequences for four age-structured cohorts of sessile oak (Quercus petraea) dating back to 1680, in each of three different oak forests in France. The genetic covariances of allelic frequency changes increased between successive time periods, highlighting genome-wide effects of linked selection. We found imprints of parallel linked selection in the three forests during the late LIA, and a shift of selection during more recent time periods of the Anthropocene. The changes in allelic covariances within and between forests mirrored the documented changes in the occurrence of extreme events (droughts and frosts) over the last 300 years. The genomic regions with the highest covariances were enriched in genes involved in plant responses to pathogens and abiotic stresses (temperature and drought). These responses are consistent with the reported sequence of frost (or drought) and disease damage ultimately leading to the oak dieback after extreme events. They provide support for adaptive evolution of long-lived species during recent climatic changes. Although we acknowledge that other sources (e.g., gene flow, generation overlap) may have contributed to temporal covariances of allelic frequency changes, the consistent and correlated response across the three forests lends support to the existence of a systematic driving force such as natural selection.

5.
Front Genet ; 12: 691058, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35211148

RESUMO

The European Beech is the dominant climax tree in most regions of Central Europe and valued for its ecological versatility and hardwood timber. Even though a draft genome has been published recently, higher resolution is required for studying aspects of genome architecture and recombination. Here, we present a chromosome-level assembly of the more than 300 year-old reference individual, Bhaga, from the Kellerwald-Edersee National Park (Germany). Its nuclear genome of 541 Mb was resolved into 12 chromosomes varying in length between 28 and 73 Mb. Multiple nuclear insertions of parts of the chloroplast genome were observed, with one region on chromosome 11 spanning more than 2 Mb which fragments up to 54,784 bp long and covering the whole chloroplast genome were inserted randomly. Unlike in Arabidopsis thaliana, ribosomal cistrons are present in Fagus sylvatica only in four major regions, in line with FISH studies. On most assembled chromosomes, telomeric repeats were found at both ends, while centromeric repeats were found to be scattered throughout the genome apart from their main occurrence per chromosome. The genome-wide distribution of SNPs was evaluated using a second individual from Jamy Nature Reserve (Poland). SNPs, repeat elements and duplicated genes were unevenly distributed in the genomes, with one major anomaly on chromosome 4. The genome presented here adds to the available highly resolved plant genomes and we hope it will serve as a valuable basis for future research on genome architecture and for understanding the past and future of European Beech populations in a changing climate.

6.
New Phytol ; 226(4): 1171-1182, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31394003

RESUMO

Latitudinal and elevational gradients provide valuable experimental settings for studies of the potential impact of global warming on forest tree species. The availability of long-term phenological surveys in common garden experiments for traits associated with climate, such as bud flushing for sessile oaks (Quercus petraea), provide an ideal opportunity to investigate this impact. We sequenced 18 sessile oak populations and used available sequencing data for three other closely related European white oak species (Quercus pyrenaica, Quercus pubescens, and Quercus robur) to explore the evolutionary processes responsible for shaping the genetic variation across latitudinal and elevational gradients in extant sessile oaks. We used phenotypic surveys in common garden experiments and climatic data for the population of origin to perform genome-wide scans for population differentiation and genotype-environment and genotype-phenotype associations. The inferred historical relationships between Q. petraea populations suggest that interspecific gene flow occurred between Q. robur and Q. petraea populations from cooler or wetter areas. A genome-wide scan of differentiation between Q. petraea populations identified single nucleotide polymorphisms (SNPs) displaying strong interspecific relative divergence between these two species. These SNPs followed genetic clines along climatic or phenotypic gradients, providing further support for the likely contribution of introgression to the adaptive divergence of Q. petraea populations. Overall, the results indicate that outliers and associated SNPs are Q. robur ancestry-informative. We discuss the results of this study in the framework of the postglacial colonization scenario, in which introgression and diversifying selection have been proposed as essential drivers of Q. petraea microevolution.


Assuntos
Quercus , Adaptação Fisiológica/genética , Evolução Biológica , Fluxo Gênico , Genótipo , Quercus/genética
7.
New Phytol ; 226(4): 1183-1197, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31264219

RESUMO

Oaks are dominant forest tree species widely distributed across the Northern Hemisphere, where they constitute natural resources of economic, ecological, social and historical value. Hybridisation and adaptive introgression have long been thought to be major drivers of their ecological success. Therefore, the maintenance of species barriers remains a key question, given the extent of interspecific gene flow. In this study, we made use of the tremendous genetic variation among four European white oak species (31 million single nucleotide polymorphisms (SNPs)) to infer the evolutionary history of these species, study patterns of genetic differentiation and identify reproductive barriers. We first analysed the ecological and historical relationships among these species and inferred a long-term strict isolation followed by a recent and extensive postglacial contact using approximate Bayesian computation. Assuming this demographic scenario, we then performed backward simulations to generate the expected distributions of differentiation under neutrality to scan their genomes for reproductive barriers. We finally identified important intrinsic and ecological functions driving the reproductive isolation. We discussed the importance of identifying the genetic basis for the ecological preferences between these oak species and its implications for the renewal of European forests under global warming.


Assuntos
Fluxo Gênico , Quercus , Teorema de Bayes , Especiação Genética , Hibridização Genética , Quercus/genética
8.
Nat Plants ; 4(7): 440-452, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29915331

RESUMO

Oaks are an important part of our natural and cultural heritage. Not only are they ubiquitous in our most common landscapes1 but they have also supplied human societies with invaluable services, including food and shelter, since prehistoric times2. With 450 species spread throughout Asia, Europe and America3, oaks constitute a critical global renewable resource. The longevity of oaks (several hundred years) probably underlies their emblematic cultural and historical importance. Such long-lived sessile organisms must persist in the face of a wide range of abiotic and biotic threats over their lifespans. We investigated the genomic features associated with such a long lifespan by sequencing, assembling and annotating the oak genome. We then used the growing number of whole-genome sequences for plants (including tree and herbaceous species) to investigate the parallel evolution of genomic characteristics potentially underpinning tree longevity. A further consequence of the long lifespan of trees is their accumulation of somatic mutations during mitotic divisions of stem cells present in the shoot apical meristems. Empirical4 and modelling5 approaches have shown that intra-organismal genetic heterogeneity can be selected for6 and provides direct fitness benefits in the arms race with short-lived pests and pathogens through a patchwork of intra-organismal phenotypes7. However, there is no clear proof that large-statured trees consist of a genetic mosaic of clonally distinct cell lineages within and between branches. Through this case study of oak, we demonstrate the accumulation and transmission of somatic mutations and the expansion of disease-resistance gene families in trees.


Assuntos
Genoma de Planta/genética , Quercus/genética , Evolução Biológica , DNA de Plantas/genética , Variação Genética/genética , Longevidade/genética , Mutação , Filogenia , Análise de Sequência de DNA
9.
Tree Physiol ; 36(11): 1330-1342, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27358207

RESUMO

Waterlogging causes stressful conditions for perennial species. The temporary overabundance of water in waterlogged soil can induce hypoxia in the rhizosphere, leading to root death, tree decline and even dieback. Two closely related members of the European white oak complex, pedunculate (Quercus robur L.) and sessile (Quercus petraea Matt. Liebl.) oaks, have different ecological characteristics, especially regarding their adaptation to soil waterlogging. The tolerance of waterlogging observed in pedunculate oak is driven principally by its ability to produce adaptive structures, hypertrophied lenticels and adventitious roots, and to switch rapidly its metabolism to the fermentative pathway. This study had two objectives: (i) to identify genes important for adaptation to waterlogging and (ii) to gain insight into the molecular mechanisms involved in hypertrophied lenticel formation in pedunculate oak. We subjected seedlings of the two species to hypoxia by maintaining the water level 2 cm above the collar. The immersed part of the stem (i.e., containing hypertrophied lenticels in pedunculate oak) was sampled after 9 days of waterlogging stress and its gene expression was investigated by RNA-seq. Genes displaying differential expression between the two species were identified with the DESeq R package and a false discovery rate of 0.001. We found that 3705 contigs were differentially regulated between the two species. Twenty-two differentially expressed genes were validated by real-time quantitative polymerase chain reaction. The suberin biosynthesis pathway was found to be upregulated in pedunculate oak, consistent with molecular mechanisms analogous to those operating in the radial oxygen loss barrier in waterlogging-tolerant species.


Assuntos
Adaptação Fisiológica , Lipídeos , Quercus/metabolismo , Árvores/metabolismo , Água/metabolismo , Adaptação Fisiológica/genética , Fermentação , Genes de Plantas , Raízes de Plantas/metabolismo , Caules de Planta/metabolismo , Quercus/genética , Especificidade da Espécie , Árvores/genética
10.
Proteomics ; 16(9): 1386-97, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26900021

RESUMO

Changes in leaf soluble proteome were explored in 3-month-old plants of metallicolous (M) and nonmetallicolous (NM) Agrostis capillaris L. populations exposed to increasing Cu concentrations (1-50 µM) to investigate molecular mechanisms underlying plant responses to Cu excess and tolerance of M plants. Plants were cultivated on perlite (CuSO4 spiked-nutrient solution). Soluble proteins, extracted by the trichloroacetic acid/acetone procedure, were separated with 2-DE (linear 4-7 pH gradient). Analysis of CCB-stained gels (PDQuest) reproducibly detected 214 spots, and 64 proteins differentially expressed were identified using LC-MS/MS. In both populations, Cu excess impacted both light-dependent (OEE, cytochrome b6-f complex, and chlorophyll a-b binding protein), and -independent (RuBisCO) photosynthesis reactions, more intensively in NM leaves (ferredoxin-NADP reductase and metalloprotease FTSH2). In both populations, upregulation of isocitrate dehydrogenase and cysteine/methionine synthases respectively suggested increased isocitrate oxidation and enhanced need for S-containing amino-acids, likely for chelation and detoxification. In NM leaves, an increasing need for energetic compounds was indicated by the stimulation of ATPases, glycolysis, pentose phosphate pathway, and Calvin cycle enzymes; impacts on protein metabolism and oxidative stress increase were respectively suggested by the rise of chaperones and redox enzymes. Overexpression of a HSP70 may be pivotal for M Cu tolerance by protecting protein metabolism. All MS data have been deposited in the ProteomeXchange with the dataset identifier PXD001930 (http//proteomecentral.proteomexchange.org/dataset/PXD001930).


Assuntos
Adaptação Fisiológica/genética , Agrostis/efeitos dos fármacos , Sulfato de Cobre/toxicidade , Regulação da Expressão Gênica de Plantas , Folhas de Planta/efeitos dos fármacos , Proteoma/genética , Agrostis/genética , Agrostis/metabolismo , Clorofila/genética , Clorofila/metabolismo , Clorofila A , Proteínas de Ligação à Clorofila/genética , Proteínas de Ligação à Clorofila/metabolismo , Complexo Citocromos b6f/genética , Complexo Citocromos b6f/metabolismo , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Perfilação da Expressão Gênica , Ontologia Genética , Anotação de Sequência Molecular , Fotossíntese/efeitos dos fármacos , Fotossíntese/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteoma/metabolismo , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Solubilidade , Estresse Fisiológico
11.
Mol Ecol Resour ; 16(1): 254-65, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25944057

RESUMO

The 1.5 Gbp/2C genome of pedunculate oak (Quercus robur) has been sequenced. A strategy was established for dealing with the challenges imposed by the sequencing of such a large, complex and highly heterozygous genome by a whole-genome shotgun (WGS) approach, without the use of costly and time-consuming methods, such as fosmid or BAC clone-based hierarchical sequencing methods. The sequencing strategy combined short and long reads. Over 49 million reads provided by Roche 454 GS-FLX technology were assembled into contigs and combined with shorter Illumina sequence reads from paired-end and mate-pair libraries of different insert sizes, to build scaffolds. Errors were corrected and gaps filled with Illumina paired-end reads and contaminants detected, resulting in a total of 17,910 scaffolds (>2 kb) corresponding to 1.34 Gb. Fifty per cent of the assembly was accounted for by 1468 scaffolds (N50 of 260 kb). Initial comparison with the phylogenetically related Prunus persica gene model indicated that genes for 84.6% of the proteins present in peach (mean protein coverage of 90.5%) were present in our assembly. The second and third steps in this project are genome annotation and the assignment of scaffolds to the oak genetic linkage map. In accordance with the Bermuda and Fort Lauderdale agreements and the more recent Toronto Statement, the oak genome data have been released into public sequence repositories in advance of publication. In this presubmission paper, the oak genome consortium describes its principal lines of work and future directions for analyses of the nature, function and evolution of the oak genome.


Assuntos
Genoma de Planta , Quercus/genética , Modelos Genéticos , Anotação de Sequência Molecular , Filogenia , Quercus/classificação , Análise de Sequência de DNA
12.
J Proteome Res ; 14(8): 3188-203, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26112267

RESUMO

Trees adjust their growth following forced changes in orientation to re-establish a vertical position. In angiosperms, this adjustment involves the differential regulation of vascular cambial activity between the lower (opposite wood) and upper (tension wood) sides of the leaning stem. We investigated the molecular mechanisms leading to the formation of differential wood types through a quantitative proteomic and phosphoproteomic analysis on poplar subjected to a gravitropic stimulus. We identified and quantified 675 phosphopeptides, corresponding to 468 phosphoproteins, and 3 763 nonphosphorylated peptides, corresponding to 1 155 proteins, in the differentiating xylem of straight-growing trees (control) and trees subjected to a gravitational stimulus during 8 weeks. About 1% of the peptides were specific to a wood type (straight, opposite, or tension wood). Proteins quantified in more than one type of wood were more numerous: a mixed linear model showed 389 phosphopeptides and 556 proteins to differ in abundance between tension wood and opposite wood. Twenty-one percent of the phosphoproteins identified here were described in their phosphorylated form for the first time. Our analyses revealed remarkable developmental molecular plasticity, with wood type-specific phosphorylation events, and highlighted the involvement of different proteins in the biosynthesis of cell wall components during the formation of the three types of wood.


Assuntos
Fosfoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Populus/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Madeira/metabolismo , Sequência de Aminoácidos , Análise por Conglomerados , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Redes Reguladoras de Genes , Gravitação , Gravitropismo , Espectrometria de Massas , Dados de Sequência Molecular , Peptídeos/genética , Peptídeos/metabolismo , Fosfopeptídeos/genética , Fosfopeptídeos/metabolismo , Fosfoproteínas/genética , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Populus/genética , Proteoma/classificação , Proteoma/genética , Transdução de Sinais/genética , Madeira/genética , Xilema/genética , Xilema/metabolismo
13.
BMC Genomics ; 16: 112, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25765701

RESUMO

BACKGROUND: Many northern-hemisphere forests are dominated by oaks. These species extend over diverse environmental conditions and are thus interesting models for studies of plant adaptation and speciation. The genomic toolbox is an important asset for exploring the functional variation associated with natural selection. RESULTS: The assembly of previously available and newly developed long and short sequence reads for two sympatric oak species, Quercus robur and Quercus petraea, generated a comprehensive catalog of transcripts for oak. The functional annotation of 91 k contigs demonstrated the presence of a large proportion of plant genes in this unigene set. Comparisons with SwissProt accessions and five plant gene models revealed orthologous relationships, making it possible to decipher the evolution of the oak genome. In particular, it was possible to align 9.5 thousand oak coding sequences with the equivalent sequences on peach chromosomes. Finally, RNA-seq data shed new light on the gene networks underlying vegetative bud dormancy release, a key stage in development allowing plants to adapt their phenology to the environment. CONCLUSION: In addition to providing a vast array of expressed genes, this study generated essential information about oak genome evolution and the regulation of genes associated with vegetative bud phenology, an important adaptive traits in trees. This resource contributes to the annotation of the oak genome sequence and will provide support for forward genetics approaches aiming to link genotypes with adaptive phenotypes.


Assuntos
Adaptação Fisiológica/genética , Regulação da Expressão Gênica de Plantas , Dormência de Plantas/genética , Transcriptoma/genética , Sequência de Bases , Mapeamento Cromossômico , Especiação Genética , Genoma de Planta , Quercus/genética , Quercus/crescimento & desenvolvimento , Análise de Sequência de RNA
14.
Mol Ecol Resour ; 15(5): 1192-204, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25594128

RESUMO

Systematic sequencing is the method of choice for generating genomic resources for molecular marker development and candidate gene identification in nonmodel species. We generated 47,357 Sanger ESTs and 2.2M Roche-454 reads from five cDNA libraries for European beech (Fagus sylvatica L.). This tree species of high ecological and economic value in Europe is among the most representative trees of deciduous broadleaf forests. The sequences generated were assembled into 21,057 contigs with MIRA software. Functional annotations were obtained for 85% of these contigs, from the proteomes of four plant species, Swissprot accessions and the Gene Ontology database. We were able to identify 28,079 in silico SNPs for future marker development. Moreover, RNAseq and qPCR approaches identified genes and gene networks regulated differentially between two critical phenological stages preceding vegetative bud burst (the quiescent and swelling buds stages). According to climatic model-based projection, some European beech populations may be endangered, particularly at the southern and eastern edges of the European distribution range, which are strongly affected by current climate change. This first genomic resource for the genus Fagus should facilitate the identification of key genes for beech adaptation and management strategies for preserving beech adaptability.


Assuntos
Fagus/genética , Fagus/fisiologia , Regulação da Expressão Gênica de Plantas , Estudos de Associação Genética , Dormência de Plantas , Europa (Continente) , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Biblioteca Gênica , Ontologia Genética , Anotação de Sequência Molecular , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
15.
Proteomics ; 14(15): 1746-58, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24842164

RESUMO

Differential expression of soluble proteins was explored in roots of metallicolous (M) and non-M (NM) plants of Agrostis capillaris L. exposed to increasing Cu to partially identify molecular mechanisms underlying higher Cu tolerance in M plants. Plants were cultivated for 2 months on perlite with a CuSO4 (1-30 µM) spiked-nutrient solution. Soluble proteins extracted by the trichloroacetic acid/acetone procedure were separated with 2DE (linear 4-7 pH gradient). After Coomassie Blue staining and image analysis, 19 proteins differentially expressed were identified using LC-MS/MS and Expressed Sequence Tag (ESTs) databases. At supra-optimal Cu exposure (15-30 µM), glycolysis was likely altered in NM roots with increased production of glycerone-P and methylglyoxal based on overexpression of triosephosphate isomerase and fructose bisphosphate aldolase. Changes in tubulins and higher expressions of 5-methyltetrahydropteroyltriglutamatehomocysteine methyltransferase and S-adenosylmethionine synthase underpinned impacts on the cytoskeleton and stimulation of ethylene metabolism. Increased l-methionine and S-adenosylmethionine amounts may also facilitate production of nicotianamine, which complexes Cu, and of l-cysteine, needed for metallothioneins and GSH. In M roots, the increase of [Cu/Zn] superoxide dismutase suggested a better detoxification of superoxide, when Cu exposure rose. Higher Cu-tolerance of M plants would rather result from simultaneous cooperation of various processes than from a specific mechanism.


Assuntos
Agrostis/fisiologia , Cobre/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Proteoma/efeitos dos fármacos , Adaptação Fisiológica , Agrostis/química , Agrostis/metabolismo , Eletroforese em Gel Bidimensional , Proteínas de Plantas/química , Raízes de Plantas/química , Proteoma/análise , Proteoma/química , Proteômica , Solubilidade
16.
Tree Physiol ; 34(11): 1263-77, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24614303

RESUMO

Secondary xylem (wood) is formed through an intricate biological process that results in a highly variable final product. Studies have focused on understanding the molecular events for wood formation in conifers. In this process environmental, ontogenic and genetic factors influence variation in wood characteristics, including anatomical, chemical and physical properties. The main objective of this study was to analyse the ageing (ontogenic) effect on protein accumulation in wood-forming tissues along a cambial age (CA) gradient, ranging from juvenile wood (JW) sampled at the top of the tree, to mature wood (MW) sampled at the bottom of the tree. A total of 62 proteins whose accumulation varied by at least 1.5-fold according to CA were selected and identified by ESI-MS/MS; 30 of these were more abundant in MW and 32 were more abundant in JW. Consistent with earlier findings, our results show that JW is a tissue characterized by a high energy demand with the accumulation of gene products involved in energy, protein fate and cellular transport, while proteins identified in MW (heat shock response, oxygen and radical detoxification, and the S-adenosyl methionine cycle) support the idea that this tissue undergoes extended cell-wall thickening and a delay of programmed cell death.


Assuntos
Pinus/metabolismo , Proteínas de Plantas/isolamento & purificação , Proteômica , Xilema/metabolismo , Morte Celular , Parede Celular/metabolismo , Análise por Conglomerados , Eletroforese em Gel Bidimensional , Pinus/crescimento & desenvolvimento , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Proteoma , Espectrometria de Massas em Tandem , Árvores , Madeira/crescimento & desenvolvimento , Madeira/metabolismo , Xilema/crescimento & desenvolvimento
17.
Plant Biotechnol J ; 12(3): 286-99, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24256179

RESUMO

Maritime pine (Pinus pinasterAit.) is a widely distributed conifer species in Southwestern Europe and one of the most advanced models for conifer research. In the current work, comprehensive characterization of the maritime pine transcriptome was performed using a combination of two different next-generation sequencing platforms, 454 and Illumina. De novo assembly of the transcriptome provided a catalogue of 26 020 unique transcripts in maritime pine trees and a collection of 9641 full-length cDNAs. Quality of the transcriptome assembly was validated by RT-PCR amplification of selected transcripts for structural and regulatory genes. Transcription factors and enzyme-encoding transcripts were annotated. Furthermore, the available sequencing data permitted the identification of polymorphisms and the establishment of robust single nucleotide polymorphism (SNP) and simple-sequence repeat (SSR) databases for genotyping applications and integration of translational genomics in maritime pine breeding programmes. All our data are freely available at SustainpineDB, the P. pinaster expressional database. Results reported here on the maritime pine transcriptome represent a valuable resource for future basic and applied studies on this ecological and economically important pine species.


Assuntos
Biotecnologia , Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Pinus/genética , Polimorfismo de Nucleotídeo Único , Transcriptoma , Cruzamento , DNA Complementar/genética , Bases de Dados Genéticas , Tamanho do Genoma , Genótipo , Repetições de Microssatélites/genética , Anotação de Sequência Molecular , Família Multigênica , RNA de Plantas/genética , Análise de Sequência de DNA , Fatores de Transcrição/genética , Árvores
18.
BMC Plant Biol ; 13: 95, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23815794

RESUMO

BACKGROUND: The cuticle is a hydrophobic barrier located at the aerial surface of all terrestrial plants. Recent studies performed on model plants, such as Arabidopsis thaliana, have suggested that the cuticle may be involved in drought stress adaptation, preventing non-stomatal water loss. Although forest trees will face more intense drought stresses (in duration and intensity) with global warming, very few studies on the role of the cuticle in drought stress adaptation in these long-lived organisms have been so far reported. RESULTS: This aspect was investigated in a conifer, maritime pine (Pinus pinaster Ait.), in a factorial design with two genetic units (two half-sib families with different growth rates) and two treatments (irrigated vs non-irrigated), in field conditions. Saplings were grown in an open-sided greenhouse and half were irrigated three times per week for two growing seasons. Needles were sampled three times per year for cuticular wax (composition and content) and transcriptome (of 11 genes involved in cuticle biosynthesis) analysis. Non-irrigated saplings (i) had a higher cuticular wax content than irrigated saplings and (ii) overexpressed most of the genes studied. Both these trends were more marked in the faster growing family. CONCLUSIONS: The higher cuticular wax content observed in the non-irrigated treatment associated with strong modifications in products from the decarbonylation pathway suggest that cuticular wax may be involved in drought stress adaptation in maritime pine. This study provides also a set of promising candidate genes for future forward genetic studies in conifers.


Assuntos
Pinus/metabolismo , Proteínas de Plantas/genética , Água/metabolismo , Ceras/metabolismo , Secas , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Pinus/genética , Pinus/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Solo/análise , Água/análise , Ceras/química
19.
BMC Biol ; 11: 50, 2013 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-23597128

RESUMO

BACKGROUND: The availability of a large expressed sequence tags (EST) resource and recent advances in high-throughput genotyping technology have made it possible to develop highly multiplexed SNP arrays for multi-objective genetic applications, including the construction of meiotic maps. Such approaches are particularly useful in species with a large genome size, precluding the use of whole-genome shotgun assembly with current technologies. RESULTS: In this study, a 12 k-SNP genotyping array was developed for maritime pine from an extensive EST resource assembled into a unigene set. The offspring of three-generation outbred and inbred mapping pedigrees were then genotyped. The inbred pedigree consisted of a classical F2 population resulting from the selfing of a single inter-provenance (Landes x Corsica) hybrid tree, whereas the outbred pedigree (G2) resulted from a controlled cross of two intra-provenance (Landes x Landes) hybrid trees. This resulted in the generation of three linkage maps based on SNP markers: one from the parental genotype of the F2 population (1,131 markers in 1,708 centimorgan (cM)), and one for each parent of the G2 population (1,015 and 1,110 markers in 1,447 and 1,425 cM for the female and male parents, respectively). A comparison of segregation patterns in the progeny obtained from the two types of mating (inbreeding and outbreeding) led to the identification of a chromosomal region carrying an embryo viability locus with a semi-lethal allele. Following selfing and segregation, zygote mortality resulted in a deficit of Corsican homozygous genotypes in the F2 population. This dataset was also used to study the extent and distribution of meiotic recombination along the length of the chromosomes and the effect of sex and/or genetic background on recombination. The genetic background of trees in which meiotic recombination occurred was found to have a significant effect on the frequency of recombination. Furthermore, only a small proportion of the recombination hot- and cold-spots were common to all three genotypes, suggesting that the spatial pattern of recombination was genetically variable. CONCLUSION: This study led to the development of classical genomic tools for this ecologically and economically important species. It also identified a chromosomal region bearing a semi-lethal recessive allele and demonstrated the genetic variability of recombination rate over the genome.


Assuntos
Mapeamento Cromossômico , Genoma de Planta/genética , Endogamia , Meiose/genética , Pinus/genética , Recombinação Genética/genética , Alelos , Segregação de Cromossomos/genética , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Genes de Plantas/genética , Ligação Genética , Loci Gênicos/genética , Marcadores Genéticos , Técnicas de Genotipagem , Polimorfismo de Nucleotídeo Único/genética , Reprodutibilidade dos Testes
20.
BMC Plant Biol ; 10: 217, 2010 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-20925929

RESUMO

BACKGROUND: Plants are subjected to continuous stimuli from the environment and have evolved an ability to respond through various growth and development processes. Phototropism and gravitropism responses enable the plant to reorient with regard to light and gravity. RESULTS: We quantified the speed of maritime pine seedlings to reorient with regard to light and gravity over 22 days. Seedlings were inclined at 15, 30 and 45 degrees with vertical plants as controls. A lateral light source illuminated the plants and stem movement over time was recorded. Depending on the initial angle of stem lean, the apical response to the lateral light source differed. In control and 15° inclined plants, the apex turned directly towards the light source after only 2 h. In plants inclined at 30° and 45°, the apex first reoriented in the vertical plane after 2 h, then turned towards the light source after 24 h. Two-dimensional gel electrophoresis coupled with mass spectrometry was then used to describe the molecular response of stem bending involved in photo- and gravi-tropism after 22 hr and 8 days of treatment. A total of 486 spots were quantitatively analyzed using image analysis software. Significant changes were determined in the protein accumulation of 68 protein spots. Early response gravitropic associated proteins were identified, which are known to function in energy related and primary metabolism. A group of thirty eight proteins were found to be involved in primary metabolism and energy related metabolic pathways. Degradation of Rubisco was implicated in some protein shifts. CONCLUSIONS: Our study demonstrates a rapid gravitropic response in apices of maritime pine seedlings inclined >30°. Little or no response was observed at the stem bases of the same plants. The primary gravitropic response is concomitant with a modification of the proteome, consisting of an over accumulation of energy and metabolism associated proteins, which may allow the stem to reorient rapidly after bending.


Assuntos
Gravitropismo , Fototropismo , Pinus/fisiologia , Caules de Planta/fisiologia , Proteoma/fisiologia , Luz , Pinus/metabolismo , Pinus/efeitos da radiação , Proteínas de Plantas/metabolismo , Caules de Planta/metabolismo , Caules de Planta/efeitos da radiação , Plântula/metabolismo , Plântula/fisiologia , Plântula/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA