Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 34(21): e2201387, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35355349

RESUMO

Monolayer hexagonal boron nitride (hBN) has been widely considered a fundamental building block for 2D heterostructures and devices. However, the controlled and scalable synthesis of hBN and its 2D heterostructures has remained a daunting challenge. Here, an hBN/graphene (hBN/G) interface-mediated growth process for the controlled synthesis of high-quality monolayer hBN is proposed and further demonstrated. It is discovered that the in-plane hBN/G interface can be precisely controlled, enabling the scalable epitaxy of unidirectional monolayer hBN on graphene, which exhibits a uniform moiré superlattice consistent with single-domain hBN, aligned to the underlying graphene lattice. Furthermore, it is identified that the deep-ultraviolet emission at 6.12 eV stems from the 1s-exciton state of monolayer hBN with a giant renormalized direct bandgap on graphene. This work provides a viable path for the controlled synthesis of ultraclean, wafer-scale, atomically ordered 2D quantum materials, as well as the fabrication of 2D quantum electronic and optoelectronic devices.

2.
Opt Lett ; 44(23): 5679-5682, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31774752

RESUMO

Aluminum-nitride-on-sapphire has recently emerged as a novel low-loss photonics platform for a variety of on-chip electro-optics as well as linear and nonlinear optics applications. In this Letter, we demonstrate ultrahigh quality factor (Qint) microring resonators using single-crystal aluminum nitride grown on a sapphire substrate with an optimized design and fabrication process. A record high intrinsic Qint up to 2.8×106 at the wavelength of 1550 nm is achieved with a fully etched structure, indicating a low propagation loss less than 0.13 dB/cm. Such high Qint aluminum-nitride-on-sapphire resonators with their wide bandgap and electro-optical and nonlinear optical properties is promising for a wide range of low-power and high-power compact on-chip applications over a broad spectral range.

3.
Opt Express ; 26(18): 23031-23039, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30184959

RESUMO

We have studied the epitaxy of few-layer hexagonal boron nitride (h-BN) by plasma-assisted molecular beam epitaxy (MBE) using a low growth rate and nitrogen-rich condition. It has been determined that under such conditions, the growth temperature is the factor having the most significant impact on the structural and optical quality of the material. When grown at temperatures <1000 °C, the h-BN film is polycrystalline, and defect-related photoluminescence (PL) emission dominates. Epitaxial domains of exceptional crystalline quality are obtained at elevated substrate temperatures of ~1300 °C, which exhibit strong band-edge PL emission at ~220 nm and negligible defect-related emission at room temperature. Our atomistic calculations reveal that, even though the gap of h-BN is indirect, it luminesces as strongly as direct-gap materials. Experimentally, the luminescence intensity of such a few-layer h-BN sample is measured to be two orders of magnitude stronger than that of a 4-µm thick commercially grown AlN template on sapphire, demonstrating the extraordinary potential of epitaxial h-BN for deep ultraviolet (UV) optoelectronics and quantum photonics.

4.
Sci Rep ; 8(1): 6520, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29695778

RESUMO

In conventional superconductors an external magnetic field generally suppresses superconductivity. This results from a simple thermodynamic competition of the superconducting and magnetic free energies. In this study, we report the unconventional features in the superconducting epitaxial thin film tungsten telluride (WTe2). Measuring the electrical transport properties of Molecular Beam Epitaxy (MBE) grown WTe2 thin films with a high precision rotation stage, we map the upper critical field Hc2 at different temperatures T. We observe the superconducting transition temperature T c is enhanced by in-plane magnetic fields. The upper critical field Hc2 is observed to establish an unconventional non-monotonic dependence on temperature. We suggest that this unconventional feature is due to the lifting of inversion symmetry, which leads to the enhancement of Hc2 in Ising superconductors.

5.
Nano Lett ; 17(6): 3738-3743, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28471682

RESUMO

Aluminum-rich AlGaN is the ideal material system for emerging solid-state deep-ultraviolet (DUV) light sources. Devices operating in the near-UV spectral range have been realized; to date, however, the achievement of high-efficiency light-emitting diodes (LEDs) operating in the UV-C band (200-280 nm specifically) has been hindered by the extremely inefficient p-type conduction in AlGaN and the lack of DUV-transparent conductive electrodes. Here, we show that these critical challenges can be addressed by Mg dopant-free Al(Ga)N/h-BN nanowire heterostructures. By exploiting the acceptor-like boron vacancy formation, we have demonstrated that h-BN can function as a highly conductive, DUV-transparent electrode; the hole concentration is ∼1020 cm-3 at room temperature, which is 10 orders of magnitude higher than that previously measured for Mg-doped AlN epilayers. We have further demonstrated the first Al(Ga)N/h-BN LED, which exhibits strong emission at ∼210 nm. This work also reports the first achievement of Mg-free III-nitride LEDs that can exhibit high electrical efficiency (80% at 20 A/cm2).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA